NLP研究方向的「情感分析领域」的简单调研
情感分析領域相關內容,非正式綜述,僅供參考。有些鏈接在可能在微信文章失效,請點擊閱讀原文獲取。
(https://blog.csdn.net/DoJintian/article/details/88356413)
簡介
情感分析或觀點挖掘是對人們對產品、服務、組織、個人、問題、事件、話題及其屬性的觀點、情感、情緒、評價和態度的計算研究。
現有研究已經產生了可用于情感分析多項任務的大量技術,包括監督和無監督方法。在監督方法中,早期論文使用所有監督機器學習方法(如支持向量機、最大熵、樸素貝葉斯等)和特征組合。無監督方法包括使用情感詞典、語法分析和句法模式的不同方法。現有多本綜述書籍和論文,廣泛地涵蓋了早期的方法和應用。
大約十年前,深度學習成為強大的機器學習技術,在很多應用領域產生了當前最優的結果,包括計算機視覺、語音識別、NLP 等。近期將深度學習應用到情感分析也逐漸變得流行。
情感分析的三種粒度
文檔粒度(document level):文檔級情感分類是指為觀點型文檔標記整體的情感傾向/極性,即確定文檔整體上傳達的是積極的還是消極的觀點。因此,這是一個二元分類任務,也可以形式化為回歸任務,例如為文檔按 1 到 5 星評級。一些研究者也將其看成一個五類分類任務。
句子粒度(sentence level):語句級情感分類用來標定單句中的表達情感。正如之前所討論的,句子的情感可以用主觀性分類和極性分類來推斷,前者將句子分為主觀或客觀的,而后者則判定主觀句子表示消極或積極的情感。在現有的深度學習模型中,句子情感分類通常會形成一個聯合的三類別分類問題,即預測句子為積極、中立或消極。
短語粒度(aspect level):也稱為主題粒度,每一個短語代表了一個主題。與文檔級和語句級的情感分類不同,aspect level 情感分類同時考慮了情感信息和主題信息(情感一般都會有一個主題)。給定一個句子和主題特征,aspect level 情感分類可以推斷出句子在主題特征的情感極性/傾向。例如,句子「the screen is very clear but the battery life is too short.」中,如果主題特征是「screen」,則情感是積極的,如果主題特征是「battery life」,則情感是消極的。
深度學習模型
文檔/句子粒度:Kim等人(2013) 提出的CNN文本分類工作,成為句子級情感分類任務的重要baseline之一;
文檔/句子粒度:基本的lstm模型加上pooling策略構成分類模型,是通常用來做情感分析的方法;
短語粒度:Tang等人(2015) 使用兩種不同的rnn網絡,結合文本和主題進行情感分析;
短語粒度:Tang等人(2016) 結合memory-network,解決target-dedependent問題,這里的target理解為前面提過的aspect;
短語粒度:Chen等人(2017) 分別使用位置權重記憶和層疊attention的復合機制,建模target詞和文本間的相互交互關系,以解決短語級情感分類問題;
短語粒度:Schmitt1等人(2018) 將aspect和polarity結合在一起進行分類任務訓練,得到情感分析的模型;
現在流行模型:大規模語料預訓練(詞向量/Elmo/GPT/Bert)+ 深度學習分類器(lstm/cnn/transformer),一個很好的示例見AI Challenger 2018:細粒度用戶評論情感分類冠軍思路總結。
相關數據
情感詞典
詞性字典1 ? 詞性字典2
大連理工大學中文情感詞匯本體庫
清華大學李軍中文褒貶義詞典
知網情感詞典
情感數據集
15 Free Sentiment Analysis Datasets for Machine Learning
大眾點評細粒度用戶評論情感數據集
汽車行業用戶觀點主題及情感識別
電商評論情感數據
酒店評論語料
SemEval-2014 Task 4數據集
Citysearch corpus 餐館評論數據
NLPCC2014評估任務2_基于深度學習的情感分類
NLPCC2013評估任務_中文微博觀點要素抽取
NLPCC2013評估任務_中文微博情緒識別
NLPCC2013評估任務_跨領域情感分類
NLPCC2012評估任務_面向中文微博的情感分析
康奈爾大學影評數據集
其他資源
[Sentiment Analysis with LSTMs in Tensorflow](https://github.com/adeshpande3/LSTM-Sentiment-Analysis ?)
Sentiment analysis on tweets using Naive Bayes, SVM, CNN, LSTM, etc.
Chinese Shopping Reviews sentiment analysis
AI Challenger 2018:細粒度用戶評論情感分類冠軍思路總結
文獻資料
文本情感分析綜述(騰訊語義團隊)
Deep learning for sentiment analysis: A survey
情感分析資源大全
Tang D, Qin B, Liu T. Aspect level sentiment classification with deep memory network[J]. arXiv preprint arXiv:1605.08900, 2016.
Kim Y. Convolutional neural networks for sentence classification[J]. arXiv preprint arXiv:1408.5882, 2014.
https://blog.csdn.net/DoJintian/article/details/88356413
請關注和分享↓↓↓?
機器學習初學者
QQ群:727137612
(注意:本站有7個qq群,加入過任何一個的不需要再加)
本站的知識星球ID:92416895
往期精彩回顧
良心推薦:機器學習入門資料匯總及學習建議(2018版)
黃海廣博士的github鏡像下載(機器學習及深度學習資源)
吳恩達老師的機器學習和深度學習課程筆記打印版
機器學習小抄-(像背托福單詞一樣理解機器學習)
首發:深度學習入門寶典-《python深度學習》原文代碼中文注釋版及電子書
科研工作者的神器-zotero論文管理工具
機器學習的數學基礎
機器學習必備寶典-《統計學習方法》的python代碼實現、電子書及課件
吐血推薦收藏的學位論文排版教程(完整版)
機器學習入門的百科全書-2018年“機器學習初學者”公眾號文章匯總
總結
以上是生活随笔為你收集整理的NLP研究方向的「情感分析领域」的简单调研的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Numpy练习题100题-提高你的数据分
- 下一篇: TIANCHI天池-OGeek算法挑战赛