日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

计算几何参考模板

發布時間:2025/1/21 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 计算几何参考模板 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
#include <iostream> #include <cmath> #include <vector> #include <algorithm> #define MAX_N 100 using namespace std; /// //常量區 const double INF = 1e10; // 無窮大 const double EPS = 1e-15; // 計算精度 const int LEFT = 0; // 點在直線左邊 const int RIGHT = 1; // 點在直線右邊 const int ONLINE = 2; // 點在直線上 const int CROSS = 0; // 兩直線相交 const int COLINE = 1; // 兩直線共線 const int PARALLEL = 2; // 兩直線平行 const int NOTCOPLANAR = 3; // 兩直線不共面 const int INSIDE = 1; // 點在圖形內部 const int OUTSIDE = 2; // 點在圖形外部 const int BORDER = 3; // 點在圖形邊界 const int BAOHAN = 1; // 大圓包含小圓 const int NEIQIE = 2; // 內切 const int XIANJIAO = 3; // 相交 const int WAIQIE = 4; // 外切 const int XIANLI = 5; // 相離 /// /// //類型定義區 struct Point { // 二維點或矢量 double x, y; double angle, dis; Point() {} Point(double x0, double y0): x(x0), y(y0) {} }; struct Point3D { //三維點或矢量 double x, y, z; Point3D() {} Point3D(double x0, double y0, double z0): x(x0), y(y0), z(z0) {} }; struct Line { // 二維的直線或線段 Point p1, p2; Line() {} Line(Point p10, Point p20): p1(p10), p2(p20) {} }; struct Line3D { // 三維的直線或線段 Point3D p1, p2; Line3D() {} Line3D(Point3D p10, Point3D p20): p1(p10), p2(p20) {} }; struct Rect { // 用長寬表示矩形的方法 w, h分別表示寬度和高度 double w, h; Rect() {}Rect(double _w,double _h) : w(_w),h(_h) {} }; struct Rect_2 { // 表示矩形,左下角坐標是(xl, yl),右上角坐標是(xh, yh) double xl, yl, xh, yh; Rect_2() {}Rect_2(double _xl,double _yl,double _xh,double _yh) : xl(_xl),yl(_yl),xh(_xh),yh(_yh) {} }; struct Circle { // Point c;double r;Circle() {}Circle(Point _c,double _r) :c(_c),r(_r) {} }; typedef vector<Point> Polygon; // 二維多邊形 typedef vector<Point> Points; // 二維點集 typedef vector<Point3D> Points3D; // 三維點集 /// /// //基本函數區 inline double max(double x,double y) { return x > y ? x : y; } inline double min(double x, double y) { return x > y ? y : x; } inline bool ZERO(double x) // x == 0 { return (fabs(x) < EPS); } inline bool ZERO(Point p) // p == 0 { return (ZERO(p.x) && ZERO(p.y)); } inline bool ZERO(Point3D p) // p == 0 { return (ZERO(p.x) && ZERO(p.y) && ZERO(p.z)); } inline bool EQ(double x, double y) // eqaul, x == y { return (fabs(x - y) < EPS); } inline bool NEQ(double x, double y) // not equal, x != y { return (fabs(x - y) >= EPS); } inline bool LT(double x, double y) // less than, x < y { return ( NEQ(x, y) && (x < y) ); } inline bool GT(double x, double y) // greater than, x > y { return ( NEQ(x, y) && (x > y) ); } inline bool LEQ(double x, double y) // less equal, x <= y { return ( EQ(x, y) || (x < y) ); } inline bool GEQ(double x, double y) // greater equal, x >= y { return ( EQ(x, y) || (x > y) ); } // 注意!!! // 如果是一個很小的負的浮點數 // 保留有效位數輸出的時候會出現-0.000這樣的形式, // 前面多了一個負號 // 這就會導致錯誤!!!!!! // 因此在輸出浮點數之前,一定要調用次函數進行修正! inline double FIX(double x) { return (fabs(x) < EPS) ? 0 : x; } // / //二維矢量運算 bool operator==(Point p1, Point p2) { return ( EQ(p1.x, p2.x) && EQ(p1.y, p2.y) ); } bool operator!=(Point p1, Point p2) { return ( NEQ(p1.x, p2.x) || NEQ(p1.y, p2.y) ); } bool operator<(Point p1, Point p2) { if (NEQ(p1.x, p2.x)) { return (p1.x < p2.x); } else { return (p1.y < p2.y); } } Point operator+(Point p1, Point p2) { return Point(p1.x + p2.x, p1.y + p2.y); } Point operator-(Point p1, Point p2) { return Point(p1.x - p2.x, p1.y - p2.y); } double operator*(Point p1, Point p2) // 計算叉乘 p1 × p2 { return (p1.x * p2.y - p2.x * p1.y); } double operator&(Point p1, Point p2) { // 計算點積 p1·p2 return (p1.x * p2.x + p1.y * p2.y); } double Norm(Point p) // 計算矢量p的模 { return sqrt(p.x * p.x + p.y * p.y); } // 把矢量p旋轉角度angle (弧度表示) // angle > 0表示逆時針旋轉 // angle < 0表示順時針旋轉 Point Rotate(Point p, double angle) { Point result; result.x = p.x * cos(angle) - p.y * sin(angle); result.y = p.x * sin(angle) + p.y * cos(angle); return result; } // // //三維矢量運算 bool operator==(Point3D p1, Point3D p2) { return ( EQ(p1.x, p2.x) && EQ(p1.y, p2.y) && EQ(p1.z, p2.z) ); } bool operator<(Point3D p1, Point3D p2) { if (NEQ(p1.x, p2.x)) { return (p1.x < p2.x); } else if (NEQ(p1.y, p2.y)) { return (p1.y < p2.y); } else { return (p1.z < p2.z); } } Point3D operator+(Point3D p1, Point3D p2) { return Point3D(p1.x + p2.x, p1.y + p2.y, p1.z + p2.z); } Point3D operator-(Point3D p1, Point3D p2) { return Point3D(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z); } Point3D operator*(Point3D p1, Point3D p2) // 計算叉乘 p1 x p2 { return Point3D(p1.y * p2.z - p1.z * p2.y, p1.z * p2.x - p1.x * p2.z, p1.x * p2.y - p1.y * p2.x ); } double operator&(Point3D p1, Point3D p2) { // 計算點積 p1·p2 return (p1.x * p2.x + p1.y * p2.y + p1.z * p2.z); } double Norm(Point3D p) // 計算矢量p的模 { return sqrt(p.x * p.x + p.y * p.y + p.z * p.z); } // / //幾何題面積計算 // // 根據三個頂點坐標計算三角形面積 // 面積的正負按照右手旋規則確定 double Area(Point A, Point B, Point C) //三角形面積 { return ((B-A)*(C-A) / 2.0); } // 根據三條邊長計算三角形面積 double Area(double a, double b, double c) //三角形面積 { double s = (a + b + c) / 2.0; return sqrt(s * (s - a) * (s - b) * (s - c)); } double Area(const Circle & C) { return M_PI * C.r * C.r; } // 計算多邊形面積 // 面積的正負按照右手旋規則確定 double Area(const Polygon& poly) //多邊形面積 { double res = 0; int n = poly.size(); if (n < 3) return 0; for(int i = 0; i < n; i++) { res += poly[i].x * poly[(i+1)%n].y; res -= poly[i].y * poly[(i+1)%n].x; } return (res / 2.0); } // //點.線段.直線問題 // double Distance(Point p1, Point p2) //2點間的距離 {return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)); } double Distance(Point3D p1, Point3D p2) //2點間的距離,三維 {return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z)); } double Distance(Point p, Line L) // 求二維平面上點到直線的距離 { return ( fabs((p - L.p1) * (L.p2 - L.p1)) / Norm(L.p2 - L.p1) ); } double Distance(Point3D p, Line3D L)// 求三維空間中點到直線的距離 { return ( Norm((p - L.p1) * (L.p2 - L.p1)) / Norm(L.p2 - L.p1) ); } bool OnLine(Point p, Line L) // 判斷二維平面上點p是否在直線L上 { return ZERO( (p - L.p1) * (L.p2 - L.p1) ); } bool OnLine(Point3D p, Line3D L) // 判斷三維空間中點p是否在直線L上 { return ZERO( (p - L.p1) * (L.p2 - L.p1) ); } int Relation(Point p, Line L) // 計算點p與直線L的相對關系 ,返回ONLINE,LEFT,RIGHT { double res = (L.p2 - L.p1) * (p - L.p1); if (EQ(res, 0)) { return ONLINE; } else if (res > 0) { return LEFT; } else { return RIGHT; } } bool SameSide(Point p1, Point p2, Line L) // 判斷點p1, p2是否在直線L的同側 { double m1 = (p1 - L.p1) * (L.p2 - L.p1); double m2 = (p2 - L.p1) * (L.p2 - L.p1); return GT(m1 * m2, 0); } bool OnLineSeg(Point p, Line L) // 判斷二維平面上點p是否在線段l上 { return ( ZERO( (L.p1 - p) * (L.p2 - p) ) && LEQ((p.x - L.p1.x)*(p.x - L.p2.x), 0) && LEQ((p.y - L.p1.y)*(p.y - L.p2.y), 0) ); } bool OnLineSeg(Point3D p, Line3D L) // 判斷三維空間中點p是否在線段l上 { return ( ZERO((L.p1 - p) * (L.p2 - p)) && EQ( Norm(p - L.p1) + Norm(p - L.p2), Norm(L.p2 - L.p1)) ); } Point SymPoint(Point p, Line L) // 求二維平面上點p關于直線L的對稱點 { Point result; double a = L.p2.x - L.p1.x; double b = L.p2.y - L.p1.y; double t = ( (p.x - L.p1.x) * a + (p.y - L.p1.y) * b ) / (a*a + b*b); result.x = 2 * L.p1.x + 2 * a * t - p.x; result.y = 2 * L.p1.y + 2 * b * t - p.y; return result; } bool Coplanar(Points3D points) // 判斷一個點集中的點是否全部共面 { int i; Point3D p; if (points.size() < 4) return true; p = (points[2] - points[0]) * (points[1] - points[0]); for (i = 3; i < points.size(); i++) { if (! ZERO(p & points[i]) ) return false; } return true; } bool LineIntersect(Line L1, Line L2) // 判斷二維的兩直線是否相交 { return (! ZERO((L1.p1 - L1.p2)*(L2.p1 - L2.p2)) ); // 是否平行 } bool LineIntersect(Line3D L1, Line3D L2) // 判斷三維的兩直線是否相交 { Point3D p1 = L1.p1 - L1.p2; Point3D p2 = L2.p1 - L2.p2; Point3D p = p1 * p2; if (ZERO(p)) return false; // 是否平行 p = (L2.p1 - L1.p2) * (L1.p1 - L1.p2); return ZERO(p & L2.p2); // 是否共面 } bool LineSegIntersect(Line L1, Line L2) // 判斷二維的兩條線段是否相交 { return ( GEQ( max(L1.p1.x, L1.p2.x), min(L2.p1.x, L2.p2.x) ) && GEQ( max(L2.p1.x, L2.p2.x), min(L1.p1.x, L1.p2.x) ) && GEQ( max(L1.p1.y, L1.p2.y), min(L2.p1.y, L2.p2.y) ) && GEQ( max(L2.p1.y, L2.p2.y), min(L1.p1.y, L1.p2.y) ) && LEQ( ((L2.p1 - L1.p1) * (L1.p2 - L1.p1)) * ((L2.p2 - L1.p1) * (L1.p2 - L1.p1)), 0 ) && LEQ( ((L1.p1 - L2.p1) * (L2.p2 - L2.p1)) * ((L1.p2 - L2.p1) * (L2.p2 - L2.p1)), 0 ) ); } bool LineSegIntersect(Line3D L1, Line3D L2) // 判斷三維的兩條線段是否相交 { // todo return true; } // 計算兩條二維直線的交點,結果在參數P中返回 // 返回值說明了兩條直線的位置關系: COLINE -- 共線 PARALLEL -- 平行 CROSS -- 相交 int CalCrossPoint(Line L1, Line L2, Point& P) { double A1, B1, C1, A2, B2, C2; A1 = L1.p2.y - L1.p1.y; B1 = L1.p1.x - L1.p2.x; C1 = L1.p2.x * L1.p1.y - L1.p1.x * L1.p2.y; A2 = L2.p2.y - L2.p1.y; B2 = L2.p1.x - L2.p2.x; C2 = L2.p2.x * L2.p1.y - L2.p1.x * L2.p2.y; if (EQ(A1 * B2, B1 * A2)) { if (EQ( (A1 + B1) * C2, (A2 + B2) * C1 )) { return COLINE; } else { return PARALLEL; } } else { P.x = (B2 * C1 - B1 * C2) / (A2 * B1 - A1 * B2); P.y = (A1 * C2 - A2 * C1) / (A2 * B1 - A1 * B2); return CROSS; } } // 計算兩條三維直線的交點,結果在參數P中返回 // 返回值說明了兩條直線的位置關系 COLINE -- 共線 PARALLEL -- 平行 CROSS -- 相交 NONCOPLANAR -- 不公面 int CalCrossPoint(Line3D L1, Line3D L2, Point3D& P) { // todo return 0; } // 計算點P到直線L的最近點 Point NearestPointToLine(Point P, Line L) { Point result; double a, b, t; a = L.p2.x - L.p1.x; b = L.p2.y - L.p1.y; t = ( (P.x - L.p1.x) * a + (P.y - L.p1.y) * b ) / (a * a + b * b); result.x = L.p1.x + a * t; result.y = L.p1.y + b * t; return result; } // 計算點P到線段L的最近點 Point NearestPointToLineSeg(Point P, Line L) { Point result; double a, b, t; a = L.p2.x - L.p1.x; b = L.p2.y - L.p1.y; t = ( (P.x - L.p1.x) * a + (P.y - L.p1.y) * b ) / (a * a + b * b); if ( GEQ(t, 0) && LEQ(t, 1) ) { result.x = L.p1.x + a * t; result.y = L.p1.y + b * t; } else { if ( Norm(P - L.p1) < Norm(P - L.p2) ) { result = L.p1; } else { result = L.p2; } } return result; } // 計算險段L1到線段L2的最短距離 double MinDistance(Line L1, Line L2) { double d1, d2, d3, d4; if (LineSegIntersect(L1, L2)) { return 0; } else { d1 = Norm( NearestPointToLineSeg(L1.p1, L2) - L1.p1 ); d2 = Norm( NearestPointToLineSeg(L1.p2, L2) - L1.p2 ); d3 = Norm( NearestPointToLineSeg(L2.p1, L1) - L2.p1 ); d4 = Norm( NearestPointToLineSeg(L2.p2, L1) - L2.p2 ); return min( min(d1, d2), min(d3, d4) ); } } // 求二維兩直線的夾角, // 返回值是0~Pi之間的弧度 double Inclination(Line L1, Line L2) { Point u = L1.p2 - L1.p1; Point v = L2.p2 - L2.p1; return acos( (u & v) / (Norm(u)*Norm(v)) ); } // 求三維兩直線的夾角, // 返回值是0~Pi之間的弧度 double Inclination(Line3D L1, Line3D L2) { Point3D u = L1.p2 - L1.p1; Point3D v = L2.p2 - L2.p1; return acos( (u & v) / (Norm(u)*Norm(v)) ); } ////////// //多邊行問題: // // 判斷點p是否在凸多邊形poly內 // poly的頂點數目要大于等于3 // 返回值為: // INSIDE -- 點在poly內 // BORDER -- 點在poly邊界上 // OUTSIDE -- 點在poly外 int InsideConvex(Point p, const Polygon& poly) // 判斷點p是否在凸多邊形poly內 { Point q(0, 0); Line side; int i, n = poly.size(); for (i = 0; i < n; i++) { q.x += poly[i].x; q.y += poly[i].y; } q.x /= n; q.y /= n; for (i = 0; i < n; i++) { side.p1 = poly[i]; side.p2 = poly[(i+1)%n]; if (OnLineSeg(p, side)) { return BORDER; } else if (!SameSide(p, q, side)) { return OUTSIDE; } } return INSIDE; } // 判斷多邊形poly是否是凸的 bool IsConvex(const Polygon& poly) // 判斷多邊形poly是否是凸的 { int i, n, rel; Line side; n = poly.size(); if (n < 3) return false; side.p1 = poly[0]; side.p2 = poly[1]; rel = Relation(poly[2], side); for (i = 1; i < n; i++) { side.p1 = poly[i]; side.p2 = poly[(i+1)%n]; if (Relation(poly[(i+2)%n], side) != rel) return false; } return true; } // 判斷點p是否在簡單多邊形poly內, 多邊形可以是凸的或凹的 // poly的頂點數目要大于等于3 // 返回值為: // INSIDE -- 點在poly內 // BORDER -- 點在poly邊界上 // OUTSIDE -- 點在poly外 int InsidePolygon(const Polygon& poly, Point p) // 判斷點p是否在簡單多邊形poly內, 多邊形可以是凸的或凹的 { int i, n, count; Line ray, side; n = poly.size(); count = 0; ray.p1 = p; ray.p2.y = p.y; ray.p2.x = - INF; for (i = 0; i < n; i++) { side.p1 = poly[i]; side.p2 = poly[(i+1)%n]; if( OnLineSeg(p, side) ) { return BORDER; } // 如果side平行x軸則不作考慮 if ( EQ(side.p1.y, side.p2.y) ) { continue; } if (OnLineSeg(side.p1, ray)) { if (GT(side.p1.y, side.p2.y)) count++; } else if (OnLineSeg(side.p2, ray)) { if ( GT(side.p2.y, side.p1.y)) count++; } else if (LineSegIntersect(ray, side)) { count++; } } return ((count % 2 == 1) ? INSIDE : OUTSIDE); } // 判斷線段是否在多邊形內 (線段的點可能在多邊形上) // 多邊形可以是任意簡單多邊形 bool InsidePolygon(const Polygon& poly, Line L) // 判斷線段是否在多邊形內 (線段的點可能在多邊形上) { bool result; int n, i; Points points; Point p; Line side; result = ( (InsidePolygon(poly, L.p1) != OUTSIDE) && (InsidePolygon(poly, L.p2) != OUTSIDE) ); if (!result) return false; n = poly.size(); for (i = 0; i < n; i++) { side.p1 = poly[i]; side.p2 = poly[(i+1)%n]; if ( OnLineSeg(L.p1, side) ) { points.push_back(L.p1); } else if ( OnLineSeg(L.p2, side) ) { points.push_back(L.p2); } else if ( OnLineSeg(side.p1, L) ) { points.push_back(side.p1); } else if ( OnLineSeg(side.p2, L) ) { points.push_back(side.p2); } else if( LineSegIntersect(side, L) ) { return false; } } // 對交點進行排序 sort(points.begin(), points.end()); for (i = 1; i < points.size(); i++) { if (points[i-1] != points[i]) { p.x = (points[i-1].x + points[i].x) / 2.0; p.y = (points[i-1].y + points[i].y) / 2.0; if ( InsidePolygon(poly, p) == OUTSIDE ) { return false; } } } return true; } // 尋找凸包 graham 掃描法 // 生成的多邊形頂點按逆時針方向排列 bool GrahamComp(const Point& left, const Point& right) { if (EQ(left.angle, right.angle)) { return (left.dis < right.dis); } else { return (left.angle < right.angle); } } void GrahamScan(Points& points, Polygon& result) { int i, k, n; Point p; n = points.size(); result.clear(); if (n < 3) return; // 選取points中y坐標最小的點points[k], // 如果這樣的點有多個,則取最左邊的一個 k = 0; for (i = 1; i < n; i++ ) { if (EQ(points[i].y, points[k].y)) { if (points[i].x <= points[k].x) k = i; } else if (points[i].y < points[k].y) { k = i; } } swap(points[0], points[k]); // 現在points中y坐標最小的點在points[0] // 計算每個點相對于points[0]的極角和距離 for (i = 1; i < n; i++) { points[i].angle = atan2(points[i].y - points[0].y, points[i].x - points[0].x); points[i].dis = Norm(points[i] - points[0]); } // 對頂點按照相對points[0]的極角從小到大進行排序 // 對于極角相同的按照距points[0]的距離從小到大排序 sort(points.begin() + 1, points.end(), GrahamComp); // 下面計算凸包 result.push_back(points[0]); for (i = 1; i < n; i++) { // 如果有極角相同的點,只取相對于points[0]最遠的一個 if ((i + 1 < n) && EQ(points[i].angle, points[i+1].angle)) continue; if (result.size() >= 3) { p = result[result.size() - 2]; while ( GEQ((points[i] - p)*(result.back() - p), 0) ) { result.pop_back(); p = result[result.size() - 2]; } } result.push_back( points[i] ); } } // 用有向直線line切割凸多邊形, // result[LEFT]和result[RIGHT]分別保存被切割后line的左邊和右邊部分 // result[ONLINE]沒有用到,只是用來作為輔助空間 // 返回值是切割多邊形的切口的長度, // 如果返回值是0 則說明未作切割。 // 當未作切割時,如果多邊形在該直線的右側,則result[RIGHT]等于該多邊形,否則result[LEFT]等于該多邊形 // 注意:被切割的多邊形一定要是凸多邊形,頂點按照逆時針排列 // 可利用這個函數來求多邊形的核,初始的核設為一個很大的矩形,然后依次用多邊形的每條邊去割 double CutConvex(const Polygon& poly, const Line& line, Polygon result[3]) { vector<Point> points; Line side; Point p; int i,n, cur, pre; result[LEFT].clear(); result[RIGHT].clear(); result[ONLINE].clear(); n = poly.size(); if (n == 0) return 0; pre = cur = Relation(poly[0], line); for (i = 0; i < n; i++) { cur = Relation(poly[(i+1)%n], line); if (cur == pre) { result[cur].push_back(poly[(i+1)%n]); } else { side.p1 = poly[i]; side.p2 = poly[(i+1)%n]; CalCrossPoint(side, line, p); points.push_back(p); result[pre].push_back(p); result[cur].push_back(p); result[cur].push_back(poly[(i+1)%n]); pre = cur; } } sort(points.begin(), points.end()); if (points.size() < 2) { return 0; } else { return Norm(points.front() - points.back()); } } // 求多邊形的重心,適用于凸的或凹的簡單多邊形 // 該算法可以一邊讀入多邊性的頂點一邊計算重心 Point CenterOfPolygon(const Polygon& poly) { Point p, p0, p1, p2, p3; double m, m0; p1 = poly[0]; p2 = poly[1]; p.x = p.y = m = 0; for (int i = 2; i < poly.size(); i++) { p3 = poly[i]; p0.x = (p1.x + p2.x + p3.x) / 3.0; p0.y = (p1.y + p2.y + p3.y) / 3.0; m0 = p1.x * p2.y + p2.x * p3.y + p3.x * p1.y - p1.y * p2.x - p2.y * p3.x - p3.y * p1.x; if (ZERO(m + m0)) { m0 += EPS; // 為了防止除0溢出,對m0做一點點修正 } p.x = (m * p.x + m0 * p0.x) / (m + m0); p.y = (m * p.y + m0 * p0.y) / (m + m0); m = m + m0; p2 = p3; } return p; } // 判斷兩個矩形是否相交 // 如果相鄰不算相交 bool Intersect(Rect_2 r1, Rect_2 r2) { return ( max(r1.xl, r2.xl) < min(r1.xh, r2.xh) && max(r1.yl, r2.yl) < min(r1.yh, r2.yh) ); } // 判斷矩形r2是否可以放置在矩形r1內 // r2可以任意地旋轉 //發現原來的給出的方法過不了OJ上的無歸之室這題, //所以用了自己的代碼 bool IsContain(Rect r1, Rect r2) //矩形的w>h { if(r1.w >r2.w && r1.h > r2.h) return true;else{double r = sqrt(r2.w*r2.w + r2.h*r2.h) / 2.0;double alpha = atan2(r2.h,r2.w);double sita = asin((r1.h/2.0)/r);double x = r * cos(sita - 2*alpha);double y = r * sin(sita - 2*alpha);if(x < r1.w/2.0 && y < r1.h/2.0 && x > 0 && y > -r1.h/2.0) return true;else return false;} } // Point Center(const Circle & C) //圓心 { return C.c; } double CommonArea(const Circle & A, const Circle & B) //兩個圓的公共面積 { double area = 0.0; const Circle & M = (A.r > B.r) ? A : B; const Circle & N = (A.r > B.r) ? B : A; double D = Distance(Center(M), Center(N)); if ((D < M.r + N.r) && (D > M.r - N.r)) { double cosM = (M.r * M.r + D * D - N.r * N.r) / (2.0 * M.r * D); double cosN = (N.r * N.r + D * D - M.r * M.r) / (2.0 * N.r * D); double alpha = 2.0 * acos(cosM); double beta = 2.0 * acos(cosN); double TM = 0.5 * M.r * M.r * sin(alpha); double TN = 0.5 * N.r * N.r * sin(beta); double FM = (alpha / 360.0) * Area(M); double FN = (beta / 360.0) * Area(N); area = FM + FN - TM - TN; } else if (D <= M.r - N.r) { area = Area(N); } return area; } bool IsInCircle(const Circle & C, const Rect_2 & rect)//判斷圓是否在矩形內(不允許相切) { return (GT(C.c.x - C.r, rect.xl)&& LT(C.c.x + C.r, rect.xh)&& GT(C.c.y - C.r, rect.yl)&& LT(C.c.y + C.r, rect.yh)); } //判斷2圓的位置關系 //返回: //BAOHAN = 1; // 大圓包含小圓 //NEIQIE = 2; // 內切 //XIANJIAO = 3; // 相交 //WAIQIE = 4; // 外切 //XIANLI = 5; // 相離 int CirCir(const Circle &c1, const Circle &c2)//判斷2圓的位置關系 {double dis = Distance(c1.c,c2.c);if(LT(dis,fabs(c1.r-c2.r))) return BAOHAN;if(EQ(dis,fabs(c1.r-c2.r))) return NEIQIE;if(LT(dis,c1.r+c2.r) && GT(dis,fabs(c1.r-c2.r))) return XIANJIAO;if(EQ(dis,c1.r+c2.r)) return WAIQIE;return XIANLI; } int main() {return 0; }

?

總結

以上是生活随笔為你收集整理的计算几何参考模板的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。