python画网络关系 节点和边存在文件里_python复杂网络分析库NetworkX
NetworkX是一個用Python語言開發的圖論與復雜網絡建模工具,內置了常用的圖與復雜網絡分析算法,可以方便的進行復雜網絡數據分析、仿真建模等工作。networkx支持創建簡單無向圖、有向圖和多重圖(multigraph);內置許多標準的圖論算法,節點可為任意數據;支持任意的邊值維度,功能豐富,簡單易用。
引入模塊
importnetworkx as nxprint nx
無向圖
例1:
#!-*- coding:utf8-*-
importnetworkx as nximportmatplotlib.pyplot as plt
G= nx.Graph() #建立一個空的無向圖G
G.add_node(1) #添加一個節點1
G.add_edge(2,3) #添加一條邊2-3(隱含著添加了兩個節點2、3)
G.add_edge(3,2) #對于無向圖,邊3-2與邊2-3被認為是一條邊
print "nodes:", G.nodes() #輸出全部的節點: [1, 2, 3]
print "edges:", G.edges() #輸出全部的邊:[(2, 3)]
print "number of edges:", G.number_of_edges() #輸出邊的數量:1
nx.draw(G)
plt.savefig("wuxiangtu.png")
plt.show()
輸出
nodes: [1, 2, 3]
edges: [(2, 3)]
number of edges: 1
例2:
#-*- coding:utf8-*-
importnetworkx as nximportmatplotlib.pyplot as plt
G=nx.DiGraph()
G.add_node(1)
G.add_node(2) #加點
G.add_nodes_from([3,4,5,6]) #加點集合
G.add_cycle([1,2,3,4]) #加環
G.add_edge(1,3)
G.add_edges_from([(3,5),(3,6),(6,7)]) #加邊集合
nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()
有向圖
例1:
#!-*- coding:utf8-*-
importnetworkx as nximportmatplotlib.pyplot as plt
G=nx.DiGraph()
G.add_node(1)
G.add_node(2)
G.add_nodes_from([3,4,5,6])
G.add_cycle([1,2,3,4])
G.add_edge(1,3)
G.add_edges_from([(3,5),(3,6),(6,7)])
nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()
注:有向圖和無向圖可以互相轉換,使用函數:
Graph.to_undirected()
Graph.to_directed()
例2,例子中把有向圖轉化為無向圖:
#!-*- coding:utf8-*-
importnetworkx as nximportmatplotlib.pyplot as plt
G=nx.DiGraph()
G.add_node(1)
G.add_node(2)
G.add_nodes_from([3,4,5,6])
G.add_cycle([1,2,3,4])
G.add_edge(1,3)
G.add_edges_from([(3,5),(3,6),(6,7)])
G=G.to_undirected()
nx.draw(G)
plt.savefig("wuxiangtu.png")
plt.show()
注意區分以下2例
例3-1
#-*- coding:utf8-*-
importnetworkx as nximportmatplotlib.pyplot as plt
G=nx.DiGraph()
road_nodes= {'a': 1, 'b': 2, 'c': 3}#road_nodes = {'a':{1:1}, 'b':{2:2}, 'c':{3:3}}
road_edges = [('a', 'b'), ('b', 'c')]
G.add_nodes_from(road_nodes.iteritems())
G.add_edges_from(road_edges)
nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()
例3-2
#-*- coding:utf8-*-
importnetworkx as nximportmatplotlib.pyplot as plt
G=nx.DiGraph()#road_nodes = {'a': 1, 'b': 2, 'c': 3}
road_nodes = {'a':{1:1}, 'b':{2:2}, 'c':{3:3}}
road_edges= [('a', 'b'), ('b', 'c')]
G.add_nodes_from(road_nodes.iteritems())
G.add_edges_from(road_edges)
nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()
加權圖
有向圖和無向圖都可以給邊賦予權重,用到的方法是add_weighted_edges_from,它接受1個或多個三元組[u,v,w]作為參數,其中u是起點,v是終點,w是權重。
例1:
#!-*- coding:utf8-*-
importnetworkx as nximportmatplotlib.pyplot as plt
G= nx.Graph() #建立一個空的無向圖G
G.add_edge(2,3) #添加一條邊2-3(隱含著添加了兩個節點2、3)
G.add_weighted_edges_from([(3, 4, 3.5),(3, 5, 7.0)]) #對于無向圖,邊3-2與邊2-3被認為是一條邊
print G.get_edge_data(2, 3)print G.get_edge_data(3, 4)print G.get_edge_data(3, 5)
nx.draw(G)
plt.savefig("wuxiangtu.png")
plt.show()
輸出
{}
{'weight': 3.5}
{'weight': 7.0}
經典圖論算法計算
計算1:求無向圖的任意兩點間的最短路徑
#-*- coding: cp936 -*-
importnetworkx as nximportmatplotlib.pyplot as plt#計算1:求無向圖的任意兩點間的最短路徑
G =nx.Graph()
G.add_edges_from([(1,2),(1,3),(1,4),(1,5),(4,5),(4,6),(5,6)])
path=nx.all_pairs_shortest_path(G)print path[1]
計算2:找圖中兩個點的最短路徑
importnetworkx as nx
G=nx.Graph()
G.add_nodes_from([1,2,3,4])
G.add_edge(1,2)
G.add_edge(3,4)try:
n=nx.shortest_path_length(G,1,4)printnexceptnx.NetworkXNoPath:print 'No path'
強連通、弱連通
強連通:有向圖中任意兩點v1、v2間存在v1到v2的路徑(path)及v2到v1的路徑。
弱聯通:將有向圖的所有的有向邊替換為無向邊,所得到的圖稱為原圖的基圖。如果一個有向圖的基圖是連通圖,則有向圖是弱連通圖。
距離
例1:弱連通
#-*- coding:utf8-*-
importnetworkx as nximportmatplotlib.pyplot as plt#G = nx.path_graph(4, create_using=nx.Graph())#0 1 2 3
G = nx.path_graph(4, create_using=nx.DiGraph()) #默認生成節點0 1 2 3,生成有向變0->1,1->2,2->3
G.add_path([7, 8, 3]) #生成有向邊:7->8->3
for c innx.weakly_connected_components(G):printcprint [len(c) for c in sorted(nx.weakly_connected_components(G), key=len, reverse=True)]
nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()
執行結果
set([0, 1, 2, 3, 7, 8])
[6]
例2:強連通
#-*- coding:utf8-*-
importnetworkx as nximportmatplotlib.pyplot as plt#G = nx.path_graph(4, create_using=nx.Graph())#0 1 2 3
G = nx.path_graph(4, create_using=nx.DiGraph())
G.add_path([3, 8, 1])#for c in nx.strongly_connected_components(G):#print c#
#print [len(c) for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True)]
con=nx.strongly_connected_components(G)printconprinttype(con)printlist(con)
nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()
執行結果
[set([8, 1, 2, 3]), set([0])]
子圖
#-*- coding:utf8-*-
importnetworkx as nximportmatplotlib.pyplot as plt
G=nx.DiGraph()
G.add_path([5, 6, 7, 8])
sub_graph= G.subgraph([5, 6, 8])#sub_graph = G.subgraph((5, 6, 8)) #ok 一樣
nx.draw(sub_graph)
plt.savefig("youxiangtu.png")
plt.show()
條件過濾
#原圖
#-*- coding:utf8-*-
importnetworkx as nximportmatplotlib.pyplot as plt
G=nx.DiGraph()
road_nodes= {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}, 'd':{'id':4}}
road_edges= [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')]
G.add_nodes_from(road_nodes)
G.add_edges_from(road_edges)
nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()
圖
#過濾函數
#-*- coding:utf8-*-
importnetworkx as nximportmatplotlib.pyplot as plt
G=nx.DiGraph()defflt_func_draw():
flt_func= lambda d: d['id'] != 1
returnflt_func
road_nodes= {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}, 'd':{'id':4}}
road_edges= [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')]
G.add_nodes_from(road_nodes.iteritems())
G.add_edges_from(road_edges)
flt_func=flt_func_draw()
part_G= G.subgraph(n for n, d in G.nodes_iter(data=True) ifflt_func(d))
nx.draw(part_G)
plt.savefig("youxiangtu.png")
plt.show()
圖
pred,succ
#-*- coding:utf8-*-import networkxasnx
import matplotlib.pyplotasplt
G=nx.DiGraph()
road_nodes= {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}}
road_edges= [('a', 'b'), ('a', 'c'), ('c', 'd')]
G.add_nodes_from(road_nodes.iteritems())
G.add_edges_from(road_edges)
print G.nodes()
print G.edges()
print"a's pred", G.pred['a']
print"b's pred", G.pred['b']
print"c's pred", G.pred['c']
print"d's pred", G.pred['d']
print"a's succ", G.succ['a']
print"b's succ", G.succ['b']
print"c's succ", G.succ['c']
print"d's succ", G.succ['d']
nx.draw(G)
plt.savefig("wuxiangtu.png")
plt.draw()
結果
['a', 'c', 'b', 'd']
[('a', 'c'), ('a', 'b'), ('c', 'd')]
a's pred {}
b's pred {'a': {}}
c's pred {'a': {}}
d's pred {'c': {}}
a's succ {'c': {}, 'b': {}}
b's succ {}
c's succ {'d': {}}
d's succ {}
與50位技術專家面對面20年技術見證,附贈技術全景圖總結
以上是生活随笔為你收集整理的python画网络关系 节点和边存在文件里_python复杂网络分析库NetworkX的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: isight参数优化理论与实例详解_详解
- 下一篇: python按日期排序_python按修