日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

tensorflow 数据格式

發(fā)布時間:2024/10/8 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 tensorflow 数据格式 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

tf 支持數(shù)據(jù)格式

"""x: Input data. It could be:- A Numpy array (or array-like), or a list of arrays(in case the model has multiple inputs).- A TensorFlow tensor, or a list of tensors(in case the model has multiple inputs).- A dict mapping input names to the corresponding array/tensors,if the model has named inputs.- A `tf.data` dataset. Should return a tupleof either `(inputs, targets)` or`(inputs, targets, sample_weights)`.- A generator or `keras.utils.Sequence` returning `(inputs, targets)`or `(inputs, targets, sample weights)`.A more detailed description of unpacking behavior for iterator types(Dataset, generator, Sequence) is given below.y: Target data. Like the input data `x`,it could be either Numpy array(s) or TensorFlow tensor(s).It should be consistent with `x` (you cannot have Numpy inputs andtensor targets, or inversely). If `x` is a dataset, generator,or `keras.utils.Sequence` instance, `y` shouldnot be specified (since targets will be obtained from `x`). """
  • numpy array
  • tf.Tensor
  • dict
  • tf.data.dataSet
  • generator keras.utils.Sequence
  • 總結(jié)

    以上是生活随笔為你收集整理的tensorflow 数据格式的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。