日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪(fǎng)問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

使用onnx包将pth文件转换为onnx文件

發(fā)布時(shí)間:2024/10/6 编程问答 31 豆豆
生活随笔 收集整理的這篇文章主要介紹了 使用onnx包将pth文件转换为onnx文件 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

本文對(duì)比一下兩種pth文件轉(zhuǎn)為onnx的區(qū)別以及onnx文件在NETRON中的圖

  • 只有參數(shù)的pth文件:cat_dog.pth
  • 既有參數(shù)又有模型結(jié)構(gòu)的pth文件:cat_dog_model_args.pth
  • 既有參數(shù)又有模型結(jié)構(gòu)的onnx文件:cat_dog_model_args.onnx
  • cat_dog_model.pth 在NETRON中的圖(無(wú)網(wǎng)絡(luò)架構(gòu))

    由于沒(méi)有網(wǎng)絡(luò)結(jié)構(gòu),所以不能通過(guò)代碼將其轉(zhuǎn)為onnx文件

    cat_dog_model_args.pth 在NETRON中的圖

    cat_dog_model_args.onnx在NETRON中的圖

    先將cat_dog_model_args.pth 轉(zhuǎn)為cat_dog_model_args.onnx
    代碼:

    import torch import torchvision dummy_input = torch.randn(1, 3, 224, 224) model = torch.load('D:\***\swin_transformer_flower\cat_dog_model_args.pth') model.eval() input_names = ["input"] output_names = ["output"] torch.onnx.export(model,dummy_input,"cat_dog_model_args.onnx",verbose=True,input_names=input_names,output_names=output_names)

    運(yùn)行以上代碼
    輸出

    graph(%input : Float(1:150528, 3:50176, 224:224, 224:1, requires_grad=0, device=cpu),%features.0.weight : Float(64:27, 3:9, 3:3, 3:1, requires_grad=0, device=cpu),%features.0.bias : Float(64:1, requires_grad=0, device=cpu),%features.2.weight : Float(64:576, 64:9, 3:3, 3:1, requires_grad=0, device=cpu),%features.2.bias : Float(64:1, requires_grad=0, device=cpu),%features.5.weight : Float(128:576, 64:9, 3:3, 3:1, requires_grad=0, device=cpu),%features.5.bias : Float(128:1, requires_grad=0, device=cpu),%features.7.weight : Float(128:1152, 128:9, 3:3, 3:1, requires_grad=0, device=cpu),%features.7.bias : Float(128:1, requires_grad=0, device=cpu),%features.10.weight : Float(256:1152, 128:9, 3:3, 3:1, requires_grad=0, device=cpu),%features.10.bias : Float(256:1, requires_grad=0, device=cpu),%features.12.weight : Float(256:2304, 256:9, 3:3, 3:1, requires_grad=0, device=cpu),%features.12.bias : Float(256:1, requires_grad=0, device=cpu),%features.14.weight : Float(256:2304, 256:9, 3:3, 3:1, requires_grad=0, device=cpu),%features.14.bias : Float(256:1, requires_grad=0, device=cpu),%features.17.weight : Float(512:2304, 256:9, 3:3, 3:1, requires_grad=0, device=cpu),%features.17.bias : Float(512:1, requires_grad=0, device=cpu),%features.19.weight : Float(512:4608, 512:9, 3:3, 3:1, requires_grad=0, device=cpu),%features.19.bias : Float(512:1, requires_grad=0, device=cpu),%features.21.weight : Float(512:4608, 512:9, 3:3, 3:1, requires_grad=0, device=cpu),%features.21.bias : Float(512:1, requires_grad=0, device=cpu),%features.24.weight : Float(512:4608, 512:9, 3:3, 3:1, requires_grad=0, device=cpu),%features.24.bias : Float(512:1, requires_grad=0, device=cpu),%features.26.weight : Float(512:4608, 512:9, 3:3, 3:1, requires_grad=0, device=cpu),%features.26.bias : Float(512:1, requires_grad=0, device=cpu),%features.28.weight : Float(512:4608, 512:9, 3:3, 3:1, requires_grad=0, device=cpu),%features.28.bias : Float(512:1, requires_grad=0, device=cpu),%classifier.0.weight : Float(100:25088, 25088:1, requires_grad=1, device=cpu),%classifier.0.bias : Float(100:1, requires_grad=1, device=cpu),%classifier.3.weight : Float(2:100, 100:1, requires_grad=1, device=cpu),%classifier.3.bias : Float(2:1, requires_grad=1, device=cpu)):%31 : Float(1:3211264, 64:50176, 224:224, 224:1, requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%input, %features.0.weight, %features.0.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\modules\conv.py:420:0%32 : Float(1:3211264, 64:50176, 224:224, 224:1, requires_grad=0, device=cpu) = onnx::Relu(%31) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1134:0%33 : Float(1:3211264, 64:50176, 224:224, 224:1, requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%32, %features.2.weight, %features.2.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\modules\conv.py:420:0%34 : Float(1:3211264, 64:50176, 224:224, 224:1, requires_grad=0, device=cpu) = onnx::Relu(%33) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1134:0%35 : Float(1:802816, 64:12544, 112:112, 112:1, requires_grad=0, device=cpu) = onnx::MaxPool[kernel_shape=[2, 2], pads=[0, 0, 0, 0], strides=[2, 2]](%34) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:586:0%36 : Float(1:1605632, 128:12544, 112:112, 112:1, requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%35, %features.5.weight, %features.5.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\modules\conv.py:420:0%37 : Float(1:1605632, 128:12544, 112:112, 112:1, requires_grad=0, device=cpu) = onnx::Relu(%36) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1134:0%38 : Float(1:1605632, 128:12544, 112:112, 112:1, requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%37, %features.7.weight, %features.7.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\modules\conv.py:420:0%39 : Float(1:1605632, 128:12544, 112:112, 112:1, requires_grad=0, device=cpu) = onnx::Relu(%38) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1134:0%40 : Float(1:401408, 128:3136, 56:56, 56:1, requires_grad=0, device=cpu) = onnx::MaxPool[kernel_shape=[2, 2], pads=[0, 0, 0, 0], strides=[2, 2]](%39) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:586:0%41 : Float(1:802816, 256:3136, 56:56, 56:1, requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%40, %features.10.weight, %features.10.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\modules\conv.py:420:0%42 : Float(1:802816, 256:3136, 56:56, 56:1, requires_grad=0, device=cpu) = onnx::Relu(%41) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1134:0%43 : Float(1:802816, 256:3136, 56:56, 56:1, requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%42, %features.12.weight, %features.12.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\modules\conv.py:420:0%44 : Float(1:802816, 256:3136, 56:56, 56:1, requires_grad=0, device=cpu) = onnx::Relu(%43) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1134:0%45 : Float(1:802816, 256:3136, 56:56, 56:1, requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%44, %features.14.weight, %features.14.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\modules\conv.py:420:0%46 : Float(1:802816, 256:3136, 56:56, 56:1, requires_grad=0, device=cpu) = onnx::Relu(%45) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1134:0%47 : Float(1:200704, 256:784, 28:28, 28:1, requires_grad=0, device=cpu) = onnx::MaxPool[kernel_shape=[2, 2], pads=[0, 0, 0, 0], strides=[2, 2]](%46) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:586:0%48 : Float(1:401408, 512:784, 28:28, 28:1, requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%47, %features.17.weight, %features.17.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\modules\conv.py:420:0%49 : Float(1:401408, 512:784, 28:28, 28:1, requires_grad=0, device=cpu) = onnx::Relu(%48) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1134:0%50 : Float(1:401408, 512:784, 28:28, 28:1, requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%49, %features.19.weight, %features.19.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\modules\conv.py:420:0%51 : Float(1:401408, 512:784, 28:28, 28:1, requires_grad=0, device=cpu) = onnx::Relu(%50) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1134:0%52 : Float(1:401408, 512:784, 28:28, 28:1, requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%51, %features.21.weight, %features.21.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\modules\conv.py:420:0%53 : Float(1:401408, 512:784, 28:28, 28:1, requires_grad=0, device=cpu) = onnx::Relu(%52) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1134:0%54 : Float(1:100352, 512:196, 14:14, 14:1, requires_grad=0, device=cpu) = onnx::MaxPool[kernel_shape=[2, 2], pads=[0, 0, 0, 0], strides=[2, 2]](%53) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:586:0%55 : Float(1:100352, 512:196, 14:14, 14:1, requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%54, %features.24.weight, %features.24.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\modules\conv.py:420:0%56 : Float(1:100352, 512:196, 14:14, 14:1, requires_grad=0, device=cpu) = onnx::Relu(%55) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1134:0%57 : Float(1:100352, 512:196, 14:14, 14:1, requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%56, %features.26.weight, %features.26.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\modules\conv.py:420:0%58 : Float(1:100352, 512:196, 14:14, 14:1, requires_grad=0, device=cpu) = onnx::Relu(%57) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1134:0%59 : Float(1:100352, 512:196, 14:14, 14:1, requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%58, %features.28.weight, %features.28.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\modules\conv.py:420:0%60 : Float(1:100352, 512:196, 14:14, 14:1, requires_grad=0, device=cpu) = onnx::Relu(%59) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1134:0%61 : Float(1:25088, 512:49, 7:7, 7:1, requires_grad=0, device=cpu) = onnx::MaxPool[kernel_shape=[2, 2], pads=[0, 0, 0, 0], strides=[2, 2]](%60) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:586:0%62 : Float(1:25088, 512:49, 7:7, 7:1, requires_grad=0, device=cpu) = onnx::AveragePool[kernel_shape=[1, 1], strides=[1, 1]](%61) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:936:0%63 : Float(1:25088, 25088:1, requires_grad=0, device=cpu) = onnx::Flatten[axis=1](%62) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torchvision\models\vgg.py:45:0%64 : Float(1:100, 100:1, requires_grad=1, device=cpu) = onnx::Gemm[alpha=1., beta=1., transB=1](%63, %classifier.0.weight, %classifier.0.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1690:0%65 : Float(1:100, 100:1, requires_grad=1, device=cpu) = onnx::Relu(%64) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:983:0%output : Float(1:2, 2:1, requires_grad=1, device=cpu) = onnx::Gemm[alpha=1., beta=1., transB=1](%65, %classifier.3.weight, %classifier.3.bias) # C:\Users\deep\anaconda3\envs\swin\lib\site-packages\torch\nn\functional.py:1690:0return (%output)Process finished with exit code 0


    圖片居中方法:
    參考:CSDN博客文章中圖片居中
    即只需要在圖片下方代碼頁(yè)最后加上#pic_center即可

    總結(jié)

    以上是生活随笔為你收集整理的使用onnx包将pth文件转换为onnx文件的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

    如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: av一区二区三区在线 | 亚洲男性天堂 | 奇米色在线 | 成人免费视频久久 | 国产精品欧美一区喷水 | 亚洲专区欧美专区 | 日韩精品久久久 | 狂野欧美性猛交xxxx777 | 怡红院男人天堂 | 一区二区精品视频在线观看 | 欧美黄页在线观看 | 亚洲福利社区 | 91禁在线看 | 韩国中文三级hd字幕 | 91丨porny | 无限资源日本好片 | xxxx96| 97公开视频 | 被灌满精子的波多野结衣 | 超级碰在线观看 | 成人影片在线免费观看 | 免费网站观看www在线观 | 96福利视频 | 欧美日韩在线视频一区 | 中文字幕一区二区人妻电影 | 影音先锋欧美在线 | 探花视频在线免费观看 | 天天综合国产 | 日日夜夜免费精品 | 最近中文字幕在线中文高清版 | 国产免费av网站 | 91蜜桃婷婷狠狠久久综合9色 | 黄色在线观看国产 | 亚洲欧美一区二区在线观看 | 久久亚洲AV成人无码一二三 | 精品爆乳一区二区三区无码av | 人物动物互动39集免费观看 | 暖暖视频日本 | 欧美一级成人 | 色妞在线 | 亚洲成熟少妇 | 可以直接观看的av | 成人在线视频一区二区三区 | 91福利免费 | 手机天堂网 | 国产精品.www | 色噜噜网站 | 91爱国产 | 国产69精品久久久久久久 | 国产视频福利 | 国产精品国产三级国产aⅴ浪潮 | 亚洲逼逼 | 久久青青| 国产成人无码精品久久 | 色视频网 | 午夜三级在线观看 | 伊人色区| 亚洲自拍偷拍一区 | 69看片| 亚洲av电影天堂男人的天堂 | 日本电影一区 | 香蕉视频黄色在线观看 | 少妇喷水在线观看 | 久久99久久99精品免观看粉嫩 | 日韩国产一区二区三区 | 香蕉视频在线观看免费 | 黄色在线免费看 | 国产在线视频网址 | 小毛片在线观看 | 精品久久福利 | 3p在线视频 | 精品福利一区二区 | 香蕉视频免费看 | 日韩精品免费一区二区在线观看 | 成人网免费看 | 黄色av免费在线播放 | 国产欧美不卡 | 精品国产乱码久久久久久闺蜜 | 亚洲乱亚洲乱妇 | 国产精品国产成人国产三级 | 第九色激情| 黄色网址在线免费 | 日韩av一区在线 | 国产视频精品自拍 | 国产亚洲精品久久久久久久久动漫 | 欧美日韩免费观看一区=区三区 | 国产成人av一区二区三区在线观看 | 中文字幕 视频一区 | 欧美中文字幕一区 | www.黄色.| 天天干天天曰 | 日产毛片 | 久久手机看片 | 久草剧场 | 牛夜精品久久久久久久99黑人 | 亚洲在线免费观看视频 | 天天舔天天干天天操 | 国产91国语对白在线 | 污污的网站在线观看 |