日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

keras 多层lstm_《Keras 实现 LSTM》笔记

發(fā)布時(shí)間:2024/9/19 编程问答 31 豆豆
生活随笔 收集整理的這篇文章主要介紹了 keras 多层lstm_《Keras 实现 LSTM》笔记 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

本文在原文的基礎(chǔ)上添加了一些注釋、運(yùn)行結(jié)果和修改了少量的代碼。

1. 介紹

LSTM(Long Short Term Memory)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò),在許多任務(wù)中,LSTM表現(xiàn)得比標(biāo)準(zhǔn)的RNN要出色得多。

關(guān)于LSTM的介紹可以看參考文獻(xiàn)1和2。本文重點(diǎn)在使用LSTM實(shí)現(xiàn)一個(gè)分類器。

2. 如何在 keras 中使用LSTM

本文主要測(cè)試 keras

使用Word Embeddings

并進(jìn)行分類的測(cè)試。代碼是在keras

官方文檔的示例中修改而來(lái)。IPython代碼鏈接

2.1 Word Embeddings 數(shù)據(jù)集

使用了stanford的GloVe作為詞向量集,這個(gè)直接下載訓(xùn)練好的詞向量文件。直接字典搜索,得到文本詞向量。Glove數(shù)據(jù)集下載文本測(cè)試數(shù)據(jù)是20_newsgroup

This data set is a collection of 20,000 messages, collected from 20 different netnews newsgroups. One thousand messages from each of the twenty newsgroups were chosen at random and partitioned by newsgroup name. The list of newsgroups from which the messages were chose is as follows:

alt.atheism

talk.politics.guns

talk.politics.mideast

talk.politics.misc

talk.religion.misc

soc.religion.christian

comp.sys.ibm.pc.hardware

comp.graphics

comp.os.ms-windows.misc

comp.sys.mac.hardware

comp.windows.x

rec.autos

rec.motorcycles

rec.sport.baseball

rec.sport.hockey

sci.crypt

sci.electronics

sci.space

sci.med

misc.forsale

我們通過(guò)label標(biāo)注把message分成不同的20個(gè)類別。每個(gè)newsgroup被map到一個(gè)數(shù)值label上。

需要用到的模塊

import numpy as np

import os

import sys

import random

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from keras.utils.np_utils import to_categorical

from keras.models import Sequential

from keras.layers import Embedding, LSTM, Dense, Activation

2.2 數(shù)據(jù)預(yù)處理

這部分是設(shè)定訓(xùn)練相關(guān)參數(shù),并且讀入訓(xùn)練好的GloVe詞向量文件。把文本讀入進(jìn)list里,一個(gè)文本存成一個(gè)str,變成一個(gè)[str]

BASE_DIR = '/home/lich/Workspace/Learning'

GLOVE_DIR = BASE_DIR + '/glove.6B/'

TEXT_DATA_DIR = BASE_DIR + '/20_newsgroup/'

MAX_SEQUENCE_LENGTH = 1000

MAX_NB_WORDS = 20000

EMBEDDING_DIM = 100

VALIDATION_SPLIT = 0.2

batch_size = 32

# first, build index mapping words in the embeddings set

# to their embedding vector

embeddings_index = {}

f = open(os.path.join(GLOVE_DIR, 'glove.6B.100d.txt'))

for line in f:

values = line.split()

word = values[0]

coefs = np.asarray(values[1:], dtype='float32')

embeddings_index[word] = coefs

f.close()

print('Found %s word vectors.' % len(embeddings_index))

#Found 400000 word vectors.

# second, prepare text samples and their labels

print('Processing text dataset')

texts = [] # list of text samples

labels_index = {} # dictionary mapping label name to numeric id

labels = [] # list of label ids

for name in sorted(os.listdir(TEXT_DATA_DIR)):

path = os.path.join(TEXT_DATA_DIR, name)

if os.path.isdir(path):

label_id = len(labels_index)

labels_index[name] = label_id

for fname in sorted(os.listdir(path)):

if fname.isdigit():

fpath = os.path.join(path, fname)

if sys.version_info < (3,):

f = open(fpath)

else:

f = open(fpath, encoding='latin-1')

texts.append(f.read())

f.close()

labels.append(label_id)

print('Found %s texts.' % len(texts))

#Found 19997 texts.

embeddings_index 里面是這樣:

embeddings_index['hi']

"""

array([ 0.1444 , 0.23978999, 0.96692997, 0.31628999, -0.36063999,

-0.87673998, 0.098512 , 0.31077999, 0.47929001, 0.27175 ,

0.30004999, -0.23732001, -0.31516999, 0.17925 , 0.61773002,

0.59820998, 0.49489 , 0.3423 , -0.078034 , 0.60211998,

0.18683 , 0.52069998, -0.12331 , 0.48313001, -0.24117 ,

0.59696001, 0.61078 , -0.84413999, 0.27660999, 0.068767 ,

-1.13880002, 0.089544 , 0.89841998, 0.53788 , 0.10841 ,

-0.10038 , 0.12921 , 0.11476 , -0.47400001, -0.80489999,

0.95999998, -0.36601999, -0.43019 , -0.39807999, -0.096782 ,

-0.71183997, -0.31494001, 0.82345998, 0.42179 , -0.69204998,

-1.48640001, 0.29497999, -0.30875 , -0.49994999, -0.46489999,

-0.44523999, 0.81059998, 1.47570002, 0.53781998, -0.28270999,

-0.045796 , 0.14454 , -0.74484998, 0.35495001, -0.40961 ,

0.35778999, 0.40061 , 0.37338999, 0.72162998, 0.40812999,

0.26155001, -0.14239 , -0.020514 , -1.11059999, -0.47670001,

0.37832001, 0.89612001, -0.17323001, -0.50137001, 0.22991 ,

1.53240001, -0.82032001, -0.10096 , 0.45201999, -0.88638997,

0.089056 , -0.19347 , -0.42253 , 0.022429 , 0.29444 ,

0.020747 , 0.48934999, 0.35991001, 0.092758 , -0.22428 ,

0.60038 , -0.31850001, -0.72424001, -0.22632 , -0.030972 ], dtype=float32)

"""

embeddings_index['hi'].shape

# (100,)

labels_index 與 20_newsgroup 的20個(gè)分類一一對(duì)應(yīng)

labels_index['alt.atheism']

#0

labels_index['comp.sys.ibm.pc.hardware']

#3

labels[:10]

#[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

labels[1000:1010]

#[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

labels[2000:2010]

#[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

打開(kāi)其中一個(gè) texts 看看

len(texts[2])

#4550

texts[2]

"""

Organization: Technical University Braunschweig, Germany

References: <16BA1E197.I3150101@dbstu1.rz.tu-bs.de> <65974@mimsy.umd.edu>

Date: Mon, 5 Apr 1993 19:08:25 GMT

Lines: 93

In article <65974@mimsy.umd.edu>

mangoe@cs.umd.edu (Charley Wingate) writes:

Well, John has a quite different, not necessarily more elaborated theology.

There is some evidence that he must have known Luke, and that the content

of Q was known to him, but not in a 'canonized' form.

This is a new argument to me. Could you elaborate a little?

The argument goes as follows: Q-oid quotes appear in John, but not in

the almost codified way they were in Matthew or Luke. However, they are

considered to be similar enough to point to knowledge of Q as such, and

not an entirely different source.

Assuming that he knew Luke would obviously put him after Luke, and would

give evidence for the latter assumption.

I don't think this follows. If you take the most traditional attributions,

then Luke might have known John, but John is an elder figure in either case.

We're talking spans of time here which are well within the range of

lifetimes.

We are talking date of texts here, not the age of the authors. The usual

explanation for the time order of Mark, Matthew and Luke does not consider

their respective ages. It says Matthew has read the text of Mark, and Luke

that of Matthew (and probably that of Mark).

As it is assumed that John knew the content of Luke's text. The evidence

for that is not overwhelming, admittedly.

(1) Earlier manuscripts of John have been discovered.

Interesting, where and which? How are they dated? How old are they?

Unfortunately, I haven't got the info at hand. It was (I think) in the late

'70s or early '80s, and it was possibly as old as CE 200.

When they are from about 200, why do they shed doubt on the order on

putting John after the rest of the three?

I don't see your point, it is exactly what James Felder said. They had no

first hand knowledge of the events, and it obvious that at least two of them

used older texts as the base of their account. And even the association of

Luke to Paul or Mark to Peter are not generally accepted.

Well, a genuine letter of Peter would be close enough, wouldn't it?

Sure, an original together with Id card of sender and receiver would be

fine. So what's that supposed to say? Am I missing something?

And I don't think a "one step removed" source is that bad. If Luke and Mark

and Matthew learned their stories directly from diciples, then I really

cannot believe in the sort of "big transformation from Jesus to gospel" that

some people posit. In news reports, one generally gets no better

information than this.

And if John IS a diciple, then there's nothing more to be said.

That John was a disciple is not generally accepted. The style and language

together with the theology are usually used as counterargument.

The argument that John was a disciple relies on the claim in the gospel

of John itself. Is there any other evidence for it?

One step and one generation removed is bad even in our times. Compare that

to reports of similar events in our century in almost illiterate societies.

Not even to speak off that believers are not necessarily the best sources.

It is also obvious that Mark has been edited. How old are the oldest

manuscripts? To my knowledge (which can be antiquated) the oldest is

quite after any of these estimates, and it is not even complete.

The only clear "editing" is problem of the ending, and it's basically a

hopeless mess. The oldest versions give a strong sense of incompleteness,

to the point where the shortest versions seem to break off in midsentence.

The most obvious solution is that at some point part of the text was lost.

The material from verse 9 on is pretty clearly later and seems to represent

a synopsys of the end of Luke.

In other words, one does not know what the original of Mark did look like

and arguments based on Mark are pretty weak.

But how is that connected to a redating of John?

Benedikt

"""

2.3Tokenize

Tokenizer 所有文本,并且把texts里面的str值先tokenizer然后映射到相應(yīng)index。下面是舉出的一個(gè)例子(只是形式一樣):

“he is a professor”

變成:

[143, 12, 1, 23]

# finally, vectorize the text samples into a 2D integer tensor

tokenizer = Tokenizer(nb_words=MAX_NB_WORDS)

tokenizer.fit_on_texts(texts)

sequences = tokenizer.texts_to_sequences(texts)

word_index = tokenizer.word_index

print('Found %s unique tokens.' % len(word_index))

#Found 214909 unique tokens.

上面的代碼吧所有的單詞都轉(zhuǎn)換成了數(shù)字

word_index['newsgroups']

# 43

sequences[2][:20]

"""

[43,

127,

357,

44,

29,

24,

16,

12,

2,

160,

24,

16,

12,

2,

195,

185,

12,

2,

182,

144]

"""

2.4 生成Train和Validate數(shù)據(jù)集

使用random.shuffle進(jìn)行隨機(jī)分割數(shù)據(jù)集,并聲稱相關(guān)訓(xùn)練驗(yàn)證集。

data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)

labels = to_categorical(np.asarray(labels))

print('Shape of data tensor:', data.shape)

print('Shape of label tensor:', labels.shape)

# ('Shape of data tensor:', (19997, 1000))

# ('Shape of label tensor:', (19997, 20))

# split the data into a training set and a validation set

indices = np.arange(data.shape[0])

np.random.shuffle(indices)

data = data[indices]

labels = labels[indices]

nb_validation_samples = int(VALIDATION_SPLIT * data.shape[0])

x_train = data[:-nb_validation_samples]

y_train = labels[:-nb_validation_samples]

x_train.shape

#(15998, 1000)

y_train.shape

#(15998, 20)

x_val = data[-nb_validation_samples:]

y_val = labels[-nb_validation_samples:]

print('Preparing embedding matrix.')

data 是一個(gè)長(zhǎng)度為 1000 的 array,sequences 中不夠長(zhǎng)的部分被補(bǔ)0了。

labels 被轉(zhuǎn)換成了 one-hot 編碼的形式。

len(data)

#1000

data[2]

"""

array([ 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0,

...

...

93, 6, 1818, 480, 19, 471, 25, 668, 2797,

35, 111, 9, 10, 2425, 3, 5, 4, 370, 5271], dtype=int32)

"""

labels[0]

"""

array([ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0.])

"""

labels[1000]

"""

array([ 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0.])

"""

labels[2000]

"""

array([ 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0.])

"""

2.5 生成Embedding Matrix

把有效出現(xiàn)次數(shù)在前面的通過(guò)GloVe生成的字典,以及本身所有的Token串進(jìn)行比對(duì),得到出現(xiàn)在訓(xùn)練集中每個(gè)詞的詞向量。

nb_words = min(MAX_NB_WORDS, len(word_index))

#20000

embedding_matrix = np.zeros((nb_words + 1, EMBEDDING_DIM))

for word, i in word_index.items():

if i > MAX_NB_WORDS:

continue

embedding_vector = embeddings_index.get(word)

if embedding_vector is not None:

# words not found in embedding index will be all-zeros.

embedding_matrix[i] = embedding_vector

print(embedding_matrix.shape)

#(20001, 100)

embedding_matrix 和 embeddings_index 是這樣的:

embedding_matrix[76]

'''

array([ 0.1225 , -0.058833 , 0.23658 , -0.28876999, -0.028181 ,

0.31524 , 0.070229 , 0.16447 , -0.027623 , 0.25213999,

0.21174 , -0.059674 , 0.36133 , 0.13607 , 0.18754999,

-0.1487 , 0.31314999, 0.13368 , -0.59702998, -0.030161 ,

0.080656 , 0.26161999, -0.055924 , -0.35350999, 0.34722 ,

-0.0055801 , -0.57934999, -0.88006997, 0.42930999, -0.15695 ,

-0.51256001, 1.26839995, -0.25228 , 0.35264999, -0.46419001,

0.55647999, -0.57555997, 0.32574001, -0.21893001, -0.13178 ,

-1.1027 , -0.039591 , 0.89643002, -0.98449999, -0.47393 ,

-0.12854999, 0.63506001, -0.94888002, 0.40088001, -0.77542001,

-0.35152999, -0.27788001, 0.68747002, 1.45799994, -0.38474 ,

-2.89369988, -0.29523 , -0.38835999, 0.94880998, 1.38909996,

0.054591 , 0.70485997, -0.65698999, 0.075648 , 0.76550001,

-0.63365 , 0.86556 , 0.42440999, 0.14796001, 0.4156 ,

0.29354 , -0.51295 , 0.19634999, -0.45568001, 0.0080246 ,

0.14528 , -0.15395001, 0.11406 , -1.21669996, -0.1111 ,

0.82639998, 0.21738 , -0.63775998, -0.074874 , -1.71300006,

-0.88270003, -0.0073058 , -0.37623 , -0.50208998, -0.58844 ,

-0.24943 , -1.04250002, 0.27678001, 0.64142001, -0.64604998,

0.43559 , -0.37276 , -0.0032068 , 0.18743999, 0.30702001])

'''

embeddings_index.get('he')

'''

array([ 0.1225 , -0.058833 , 0.23658 , -0.28876999, -0.028181 ,

0.31524 , 0.070229 , 0.16447 , -0.027623 , 0.25213999,

0.21174 , -0.059674 , 0.36133 , 0.13607 , 0.18754999,

-0.1487 , 0.31314999, 0.13368 , -0.59702998, -0.030161 ,

0.080656 , 0.26161999, -0.055924 , -0.35350999, 0.34722 ,

-0.0055801 , -0.57934999, -0.88006997, 0.42930999, -0.15695 ,

-0.51256001, 1.26839995, -0.25228 , 0.35264999, -0.46419001,

0.55647999, -0.57555997, 0.32574001, -0.21893001, -0.13178 ,

-1.1027 , -0.039591 , 0.89643002, -0.98449999, -0.47393 ,

-0.12854999, 0.63506001, -0.94888002, 0.40088001, -0.77542001,

-0.35152999, -0.27788001, 0.68747002, 1.45799994, -0.38474 ,

-2.89369988, -0.29523 , -0.38835999, 0.94880998, 1.38909996,

0.054591 , 0.70485997, -0.65698999, 0.075648 , 0.76550001,

-0.63365 , 0.86556 , 0.42440999, 0.14796001, 0.4156 ,

0.29354 , -0.51295 , 0.19634999, -0.45568001, 0.0080246 ,

0.14528 , -0.15395001, 0.11406 , -1.21669996, -0.1111 ,

0.82639998, 0.21738 , -0.63775998, -0.074874 , -1.71300006,

-0.88270003, -0.0073058 , -0.37623 , -0.50208998, -0.58844 ,

-0.24943 , -1.04250002, 0.27678001, 0.64142001, -0.64604998,

0.43559 , -0.37276 , -0.0032068 , 0.18743999, 0.30702001], dtype=float32)

'''

embeddings_index.get('he') == embedding_matrix[76]

'''

array([ True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True, True], dtype=bool)

'''

2.6 LSTM訓(xùn)練

注意訓(xùn)練集data的shape是(N_SAMPLES, MAX_SEQUENCE_LENGT),100是詞向量長(zhǎng)度,然后根據(jù)Embedding層會(huì)變成3D的Matrix

如果不清楚 Word Embedding 可以參考在Keras模型中使用預(yù)訓(xùn)練的詞向量

因?yàn)?keras 版本的問(wèn)題,運(yùn)行原文的代碼會(huì)出了一個(gè)錯(cuò)誤,本文根據(jù)這里進(jìn)行了更改。將:

embedding_layer = Embedding(nb_words + 1,

EMBEDDING_DIM,

weights=[embedding_matrix],

input_length=MAX_SEQUENCE_LENGTH,

trainable=False,

dropout=0.2)

中的 trainable=False 去掉,在后面加上 model.layers[1].trainable=False

embedding_layer = Embedding(nb_words + 1,

EMBEDDING_DIM,

weights=[embedding_matrix],

input_length=MAX_SEQUENCE_LENGTH,

dropout=0.2)

print('Build model...')

# sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')

# embedded_sequences = embedding_layer()

model = Sequential()

model.add(embedding_layer)

model.add(LSTM(100, dropout_W=0.2, dropout_U=0.2)) # try using a GRU instead, for fun

model.add(Dense(1))

model.add(Activation('sigmoid'))

model.add(Dense(len(labels_index), activation='softmax'))

model.layers[1].trainable=False

網(wǎng)絡(luò)的模型是個(gè)樣子的:

model.summary()

"""

____________________________________________________________________________________________________

Layer (type) Output Shape Param # Connected to

====================================================================================================

embedding_1 (Embedding) (None, 1000, 100) 2000100 embedding_input_1[0][0]

____________________________________________________________________________________________________

lstm_1 (LSTM) (None, 100) 80400 embedding_1[0][0]

____________________________________________________________________________________________________

dense_1 (Dense) (None, 1) 101 lstm_1[0][0]

____________________________________________________________________________________________________

activation_1 (Activation) (None, 1) 0 dense_1[0][0]

____________________________________________________________________________________________________

dense_2 (Dense) (None, 20) 40 activation_1[0][0]

====================================================================================================

Total params: 2,080,641

Trainable params: 2,000,241

Non-trainable params: 80,400

____________________________________________________________________________________________________

"""

2.6 LSTM訓(xùn)練

注意訓(xùn)練集data的shape是(N_SAMPLES, MAX_SEQUENCE_LENGT),100是詞向量長(zhǎng)度,然后根據(jù)Embedding層會(huì)變成3D的Matrix。

# try using different optimizers and different optimizer configs

model.compile(loss='categorical_crossentropy',

optimizer='adam',

metrics=['accuracy'])

print('Train...')

model.fit(x_train, y_train, batch_size=batch_size, nb_epoch=5,

validation_data=(x_val, y_val))

score, acc = model.evaluate(x_val, y_val,

batch_size=batch_size)

print('Test score:', score)

print('Test accuracy:', acc)

"""

Train on 15998 samples, validate on 3999 samples

Epoch 1/5

608/15998 [>.............................] - ETA: 833s - loss: 0.1992 - acc: 0.9500

"""

后面我就懶得訓(xùn)練了,你們也看到了,渣渣電腦太慢了。

總結(jié)

以上是生活随笔為你收集整理的keras 多层lstm_《Keras 实现 LSTM》笔记的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。