日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

20个Pandas数据实战案例,干货多多

發布時間:2024/9/15 编程问答 35 豆豆
生活随笔 收集整理的這篇文章主要介紹了 20个Pandas数据实战案例,干货多多 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

今天我們講一下pandas當中的數據過濾內容,小編之前也寫過也一篇相類似的文章,但是是基于文本數據的過濾,大家有興趣也可以去查閱一下。

下面小編會給出大概20個案例來詳細說明數據過濾的方法,首先我們先建立要用到的數據集,代碼如下

import?pandas?as?pd df?=?pd.DataFrame({"name":?["John","Jane","Emily","Lisa","Matt"],"note":?[92,94,87,82,90],"profession":["Electrical?engineer","Mechanical?engineer","Data?scientist","Accountant","Athlete"],"date_of_birth":["1998-11-01","2002-08-14","1996-01-12","2002-10-24","2004-04-05"],"group":["A","B","B","A","C"] })

output

name??note???????????profession?date_of_birth?group 0???John????92??Electrical?engineer????1998-11-01?????A 1???Jane????94??Mechanical?engineer????2002-08-14?????B 2??Emily????87???????Data?scientist????1996-01-12?????B 3???Lisa????82???????????Accountant????2002-10-24?????A 4???Matt????90??????????????Athlete????2004-04-05?????C

篩選表格中的若干列

代碼如下

df[["name","note"]]

output

name??note 0???John????92 1???Jane????94 2??Emily????87 3???Lisa????82 4???Matt????90

再篩選出若干行

我們基于上面搜索出的結果之上,再篩選出若干行,代碼如下

df.loc[:3,?["name","note"]]

output

name??note 0???John????92 1???Jane????94 2??Emily????87 3???Lisa????82

根據索引來過濾數據

這里我們用到的是iloc方法,代碼如下

df.iloc[:3,?2]

output

0????Electrical?engineer 1????Mechanical?engineer 2?????????Data?scientist

通過比較運算符來篩選數據

df[df.note?>?90]

output

name??note???????????profession?date_of_birth?group 0??John????92??Electrical?engineer????1998-11-01?????A 1??Jane????94??Mechanical?engineer????2002-08-14?????B

dt屬性接口

dt屬性接口是用于處理時間類型的數據的,當然首先我們需要將字符串類型的數據,或者其他類型的數據轉換成事件類型的數據,然后再處理,代碼如下

df.date_of_birth?=?df.date_of_birth.astype("datetime64[ns]") df[df.date_of_birth.dt.month==11]

output

name??note???????????profession?date_of_birth?group 0??John????92??Electrical?engineer????1998-11-01?????A

或者我們也可以

df[df.date_of_birth.dt.year?>?2000]

output

name??note???????????profession?date_of_birth?group 1??Jane????94??Mechanical?engineer????2002-08-14?????B 3??Lisa????82???????????Accountant????2002-10-24?????A 4??Matt????90??????????????Athlete????2004-04-05?????C

多個條件交集過濾數據

當我們遇上多個條件,并且是交集的情況下過濾數據時,代碼應該這么來寫

df[(df.date_of_birth.dt.year?>?2000)?&??(df.profession.str.contains("engineer"))]

output

name??note???????????profession?date_of_birth?group 1??Jane????94??Mechanical?engineer????2002-08-14?????B

多個條件并集篩選數據

當多個條件是以并集的方式來過濾數據的時候,代碼如下

df[(df.note?>?90)?|?(df.profession=="Data?scientist")]

output

name??note???????????profession?date_of_birth?group 0???John????92??Electrical?engineer????1998-11-01?????A 1???Jane????94??Mechanical?engineer????2002-08-14?????B 2??Emily????87???????Data?scientist????1996-01-12?????B

Query方法過濾數據

Pandas當中的query方法也可以對數據進行過濾,我們將過濾的條件輸入

df.query("note?>?90")

output

name??note???????????profession?date_of_birth?group 0??John????92??Electrical?engineer????1998-11-01?????A 1??Jane????94??Mechanical?engineer????2002-08-14?????B

又或者是

df.query("group=='A'?and?note?>?89")

output

name??note???????????profession?date_of_birth?group 0??John????92??Electrical?engineer????1998-11-01?????A

nsmallest方法過濾數據

pandas當中的nsmallest以及nlargest方法是用來找到數據集當中最大、最小的若干數據,代碼如下

df.nsmallest(2,?"note")

output

name??note??????profession?date_of_birth?group 3???Lisa????82??????Accountant????2002-10-24?????A 2??Emily????87??Data?scientist????1996-01-12?????Bdf.nlargest(2,?"note")

output

name??note???????????profession?date_of_birth?group 1??Jane????94??Mechanical?engineer????2002-08-14?????B 0??John????92??Electrical?engineer????1998-11-01?????A

isna()方法

isna()方法功能在于過濾出那些是空值的數據,首先我們將表格當中的某些數據設置成空值

df.loc[0,?"profession"]?=?np.nan df[df.profession.isna()]

output

name??note?profession?date_of_birth?group 0??John????92????????NaN????1998-11-01?????A

notna()方法

notna()方法上面的isna()方法正好相反的功能在于過濾出那些不是空值的數據,代碼如下

df[df.profession.notna()]

output

name??note???????????profession?date_of_birth?group 1???Jane????94??Mechanical?engineer????2002-08-14?????B 2??Emily????87???????Data?scientist????1996-01-12?????B 3???Lisa????82???????????Accountant????2002-10-24?????A 4???Matt????90??????????????Athlete????2004-04-05?????C

assign方法

pandas當中的assign方法作用是直接向數據集當中來添加一列

df_1?=?df.assign(score=np.random.randint(0,100,size=5)) df_1

output

name??note???????????profession?date_of_birth?group??score 0???John????92??Electrical?engineer????1998-11-01?????A?????19 1???Jane????94??Mechanical?engineer????2002-08-14?????B?????84 2??Emily????87???????Data?scientist????1996-01-12?????B?????68 3???Lisa????82???????????Accountant????2002-10-24?????A?????70 4???Matt????90??????????????Athlete????2004-04-05?????C?????39

explode方法

explode()方法直譯的話,是爆炸的意思,我們經常會遇到這樣的數據集

Name????????????Hobby 0???呂布??[打籃球,?玩游戲,?喝奶茶] 1???貂蟬???????[敲代碼,?看電影] 2???趙云????????[聽音樂,?健身]

Hobby列當中的每行數據都以列表的形式集中到了一起,而explode()方法則是將這些集中到一起的數據拆開來,代碼如下

Name?Hobby 0???呂布???打籃球 0???呂布???玩游戲 0???呂布???喝奶茶 1???貂蟬???敲代碼 1???貂蟬???看電影 2???趙云???聽音樂 2???趙云????健身

當然我們會展開來之后,數據會存在重復的情況,

df.explode('Hobby').drop_duplicates().reset_index(drop=True)

output

Name?Hobby 0???呂布???打籃球 1???呂布???玩游戲 2???呂布???喝奶茶 3???貂蟬???敲代碼 4???貂蟬???看電影 5???趙云???聽音樂 6???趙云????健身

END

各位伙伴們好,詹帥本帥搭建了一個個人博客和小程序,匯集各種干貨和資源,也方便大家閱讀,感興趣的小伙伴請移步小程序體驗一下哦!(歡迎提建議)

推薦閱讀

牛逼!Python常用數據類型的基本操作(長文系列第①篇)

牛逼!Python的判斷、循環和各種表達式(長文系列第②篇)

牛逼!Python函數和文件操作(長文系列第③篇)

牛逼!Python錯誤、異常和模塊(長文系列第④篇)

總結

以上是生活随笔為你收集整理的20个Pandas数据实战案例,干货多多的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 日本黄色美女 | 亚洲 欧美 中文字幕 | 久久婷婷国产麻豆91天堂 | 农村妇女毛片精品久久久 | 国产乱码精品一区二区三区中文 | 肉丝美脚视频一区二区 | 一本久草 | 国产精选一区二区 | 亚洲精品97久久中文字幕 | 中出视频在线观看 | 亚洲精品一区二区二区 | 在线播放一区二区三区 | av色吧 | 一本一道久久 | 97精品人人妻人人 | av毛片在线免费看 | 91人妻一区二区 | 国产欧美精品一区二区三区app | 成年人黄色在线观看 | 免费无遮挡无码永久视频 | 丁香综合网 | 多啪啪免费视频 | 日本高清不卡一区 | aa片在线观看视频在线播放 | 噜噜色成人 | 亚洲黄色片免费看 | 久久我不卡 | 黄色成人毛片 | 中文字幕一级片 | 中出在线播放 | 性淫影院 | 跪求黄色网址 | 国产一卡二卡三卡 | 美女被男人桶出白浆喷水 | 久久人人爽人人人人片 | 精品少妇一区二区三区在线观看 | 亚洲91久久 | 夜夜操天天 | av在线播放网址 | 中文字幕久久网 | 久久调教视频 | 久久99草 | 都市激情综合 | 吻胸摸激情床激烈视频大胸 | 91视频福利 | 可以免费观看av的网站 | 欧美少妇毛茸茸 | 一区在线看 | 日日av | 日韩第一页在线 | 黄色片网站在线观看 | www,xxx69 japan| 国产精品综合久久久 | 国产一区在线视频观看 | 天堂精品视频 | 伊人一级 | 直接看的av网站 | 成人在线激情视频 | 国产亚洲一区二区不卡 | 青草视频免费在线观看 | 日本黄色激情视频 | 国产一卡二卡在线 | 黄网在线观看免费 | 亚洲麻豆一区二区三区 | 亚洲一区二区三区免费看 | 久久人妻少妇嫩草av蜜桃 | 亚洲视频手机在线观看 | 韩国禁欲系高级感电影 | 好色先生tv官网 | 国产精品久久久久久吹潮 | 3d毛片 | 国产午夜精品理论片 | 色综合图区| 91精品国产综合久久久蜜臀九色 | 蜜臀av无码精品人妻色欲 | 最新天堂中文在线 | 裸体视频软件 | 国产精品主播在线 | 精品无码久久久久 | 制服丝袜在线播放 | 五月天婷婷影院 | 国产精品视频一区二区三区 | 国产高清毛片 | 九九成人| 好吊一区二区三区 | аⅴ天堂中文在线网 | 少妇光屁股影院 | 潘金莲三级野外 | 日本男人天堂网 | 九色九一| 欧美骚视频 | 国产精品成人69xxx免费视频 | 亚洲精品三区 | 国产乱码一区二区三区 | 日韩欧美猛交xxxxx无码 | 日本欧美色图 | 宅男视频在线免费观看 | www色com| 日本爱爱网址 |