日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 >

实际案例演示:一行 Python 代码实现并行

發布時間:2024/9/15 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 实际案例演示:一行 Python 代码实现并行 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.


來源:caspar

segmentfault.com/a/1190000000414339?

Python 在程序并行化方面多少有些聲名狼藉。撇開技術上的問題,例如線程的實現和 GIL,我覺得錯誤的教學指導才是主要問題。

常見的經典 Python 多線程、多進程教程多顯得偏"重"。而且往往隔靴搔癢,沒有深入探討日常工作中最有用的內容。

傳統的例子

簡單搜索下"Python 多線程教程",不難發現幾乎所有的教程都給出涉及類和隊列的例子:

import os import PILfrom multiprocessing import Pool from PIL import ImageSIZE = (75,75) SAVE_DIRECTORY = 'thumbs'def get_image_paths(folder):return (os.path.join(folder, f)for f in os.listdir(folder)if 'jpeg' in f)def create_thumbnail(filename): im = Image.open(filename)im.thumbnail(SIZE, Image.ANTIALIAS)base, fname = os.path.split(filename)save_path = os.path.join(base, SAVE_DIRECTORY, fname)im.save(save_path)if __name__ == '__main__':folder = os.path.abspath('11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')os.mkdir(os.path.join(folder, SAVE_DIRECTORY))images = get_image_paths(folder)pool = Pool()pool.map(creat_thumbnail, images)pool.close()pool.join()

哈,看起來有些像 Java 不是嗎?

我并不是說使用生產者/消費者模型處理多線程/多進程任務是錯誤的(事實上,這一模型自有其用武之地)。只是,處理日常腳本任務時我們可以使用更有效率的模型。

問題在于…

首先,你需要一個樣板類;?
其次,你需要一個隊列來傳遞對象;?
而且,你還需要在通道兩端都構建相應的方法來協助其工作(如果需想要進行雙向通信或是保存結果還需要再引入一個隊列)。

worker 越多,問題越多

按照這一思路,你現在需要一個 worker 線程的線程池。下面是一篇 IBM 經典教程中的例子——在進行網頁檢索時通過多線程進行加速。

#Example2.py ''' A more realistic thread pool example '''import time import threading import Queue import urllib2class Consumer(threading.Thread): def __init__(self, queue): threading.Thread.__init__(self)self._queue = queuedef run(self):while True:content = self._queue.get()if isinstance(content, str) and content == 'quit':breakresponse = urllib2.urlopen(content)print 'Bye byes!'def Producer():urls = ['http://www.python.org', 'http://www.yahoo.com''http://www.scala.org', 'http://www.google.com'# etc..]queue = Queue.Queue()worker_threads = build_worker_pool(queue, 4)start_time = time.time()# Add the urls to processfor url in urls:queue.put(url) ?# Add the poison pillvfor worker in worker_threads:queue.put('quit')for worker in worker_threads:worker.join()print 'Done! Time taken: {}'.format(time.time() - start_time)def build_worker_pool(queue, size):workers = []for _ in range(size):worker = Consumer(queue)worker.start()workers.append(worker)return workersif __name__ == '__main__':Producer()

這段代碼能正確的運行,但仔細看看我們需要做些什么:構造不同的方法、追蹤一系列的線程,還有為了解決惱人的死鎖問題,我們需要進行一系列的 join 操作。這還只是開始……

至此我們回顧了經典的多線程教程,多少有些空洞不是嗎?樣板化而且易出錯,這樣事倍功半的風格顯然不那么適合日常使用,好在我們還有更好的方法。

何不試試 map

map 這一小巧精致的函數是簡捷實現 Python 程序并行化的關鍵。map 源于 Lisp 這類函數式編程語言。它可以通過一個序列實現兩個函數之間的映射。

urls = ['http://www.yahoo.com', 'http://www.reddit.com'] results = map(urllib2.urlopen, urls)

上面的這兩行代碼將 urls 這一序列中的每個元素作為參數傳遞到 urlopen 方法中,并將所有結果保存到 results 這一列表中。其結果大致相當于:

results = [] for url in urls:results.append(urllib2.urlopen(url))

map 函數一手包辦了序列操作、參數傳遞和結果保存等一系列的操作。

為什么這很重要呢?這是因為借助正確的庫,map 可以輕松實現并行化操作。

在 Python 中有個兩個庫包含了 map 函數:multiprocessing 和它鮮為人知的子庫 multiprocessing.dummy.

這里多扯兩句:multiprocessing.dummy?mltiprocessing 庫的線程版克隆?這是蝦米?即便在 multiprocessing 庫的官方文檔里關于這一子庫也只有一句相關描述。而這句描述譯成人話基本就是說:"嘛,有這么個東西,你知道就成."相信我,這個庫被嚴重低估了!

dummy 是 multiprocessing 模塊的完整克隆,唯一的不同在于 multiprocessing 作用于進程,而 dummy 模塊作用于線程(因此也包括了 Python 所有常見的多線程限制)。?
所以替換使用這兩個庫異常容易。你可以針對 IO 密集型任務和 CPU 密集型任務來選擇不同的庫。

動手嘗試

使用下面的兩行代碼來引用包含并行化 map 函數的庫:

from multiprocessing import Pool from multiprocessing.dummy import Pool as ThreadPool

實例化 Pool 對象:

pool = ThreadPool()

這條簡單的語句替代了 example2.py 中 buildworkerpool 函數 7 行代碼的工作。它生成了一系列的 worker 線程并完成初始化工作、將它們儲存在變量中以方便訪問。

Pool 對象有一些參數,這里我所需要關注的只是它的第一個參數:processes. 這一參數用于設定線程池中的線程數。其默認值為當前機器 CPU 的核數。

一般來說,執行 CPU 密集型任務時,調用越多的核速度就越快。但是當處理網絡密集型任務時,事情有有些難以預計了,通過實驗來確定線程池的大小才是明智的。

pool = ThreadPool(4) # Sets the pool size to 4

線程數過多時,切換線程所消耗的時間甚至會超過實際工作時間。對于不同的工作,通過嘗試來找到線程池大小的最優值是個不錯的主意。

創建好 Pool 對象后,并行化的程序便呼之欲出了。我們來看看改寫后的 example2.py

import urllib2 from multiprocessing.dummy import Pool as ThreadPoolurls = ['http://www.python.org','http://www.python.org/about/','http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html','http://www.python.org/doc/','http://www.python.org/download/','http://www.python.org/getit/','http://www.python.org/community/','https://wiki.python.org/moin/','http://planet.python.org/','https://wiki.python.org/moin/LocalUserGroups','http://www.python.org/psf/','http://docs.python.org/devguide/','http://www.python.org/community/awards/'# etc..]# Make the Pool of workers pool = ThreadPool(4) # Open the urls in their own threads # and return the results results = pool.map(urllib2.urlopen, urls) #close the pool and wait for the work to finish pool.close() pool.join()

實際起作用的代碼只有 4 行,其中只有一行是關鍵的。map 函數輕而易舉的取代了前文中超過 40 行的例子。為了更有趣一些,我統計了不同方法、不同線程池大小的耗時情況。

# results = [] # for url in urls: # ? result = urllib2.urlopen(url) # ? results.append(result)# # ------- VERSUS ------- ## # ------- 4 Pool ------- # # pool = ThreadPool(4) # results = pool.map(urllib2.urlopen, urls)# # ------- 8 Pool ------- ## pool = ThreadPool(8) # results = pool.map(urllib2.urlopen, urls)# # ------- 13 Pool ------- ## pool = ThreadPool(13) # results = pool.map(urllib2.urlopen, urls)

結果:

# ? ? ? ?Single thread: ?14.4 Seconds # ? ? ? ? ? ? ? 4 Pool: ? 3.1 Seconds # ? ? ? ? ? ? ? 8 Pool: ? 1.4 Seconds # ? ? ? ? ? ? ?13 Pool: ? 1.3 Seconds

很棒的結果不是嗎?這一結果也說明了為什么要通過實驗來確定線程池的大小。在我的機器上當線程池大小大于 9 帶來的收益就十分有限了。

另一個真實的例子

生成上千張圖片的縮略圖?
這是一個 CPU 密集型的任務,并且十分適合進行并行化。

基礎單進程版本

import os import PILfrom multiprocessing import Pool from PIL import ImageSIZE = (75,75) SAVE_DIRECTORY = 'thumbs'def get_image_paths(folder):return (os.path.join(folder, f)for f in os.listdir(folder)if 'jpeg' in f)def create_thumbnail(filename): im = Image.open(filename)im.thumbnail(SIZE, Image.ANTIALIAS)base, fname = os.path.split(filename)save_path = os.path.join(base, SAVE_DIRECTORY, fname)im.save(save_path)if __name__ == '__main__':folder = os.path.abspath('11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')os.mkdir(os.path.join(folder, SAVE_DIRECTORY))images = get_image_paths(folder)for image in images:create_thumbnail(Image)

上邊這段代碼的主要工作就是將遍歷傳入的文件夾中的圖片文件,一一生成縮略圖,并將這些縮略圖保存到特定文件夾中。

這我的機器上,用這一程序處理 6000 張圖片需要花費 27.9 秒。

如果我們使用 map 函數來代替 for 循環:

import os import PILfrom multiprocessing import Pool from PIL import ImageSIZE = (75,75) SAVE_DIRECTORY = 'thumbs'def get_image_paths(folder):return (os.path.join(folder, f)for f in os.listdir(folder)if 'jpeg' in f)def create_thumbnail(filename): im = Image.open(filename)im.thumbnail(SIZE, Image.ANTIALIAS)base, fname = os.path.split(filename)save_path = os.path.join(base, SAVE_DIRECTORY, fname)im.save(save_path)if __name__ == '__main__':folder = os.path.abspath('11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')os.mkdir(os.path.join(folder, SAVE_DIRECTORY))images = get_image_paths(folder)pool = Pool()pool.map(creat_thumbnail, images)pool.close()pool.join()

5.6 秒!

雖然只改動了幾行代碼,我們卻明顯提高了程序的執行速度。在生產環境中,我們可以為 CPU 密集型任務和 IO 密集型任務分別選擇多進程和多線程庫來進一步提高執行速度——這也是解決死鎖問題的良方。此外,由于 map 函數并不支持手動線程管理,反而使得相關的 debug 工作也變得異常簡單。

到這里,我們就實現了(基本)通過一行 Python 實現并行化。

這種方式對于代碼的優化侵入較小,這也可以避免在重構代碼時發生意外!

END 最后說個題外話,相信大家都知道視頻號了,隨著灰度范圍擴大,越來越多的小伙伴都開通了視頻號。小詹也開通了一個視頻號,會分享互聯網那些事、讀書心得與副業經驗,歡迎掃碼關注,和小詹一起向上生長!「沒有開通發布權限的盡量多互動,提升活躍度可以更快開通哦」(聽我一分鐘,生活更輕松)(掃碼回復 1024 即可領取IT資料包) 與50位技術專家面對面20年技術見證,附贈技術全景圖

總結

以上是生活随笔為你收集整理的实际案例演示:一行 Python 代码实现并行的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 亚洲 小说 欧美 激情 另类 | 国产96视频| 久久老司机精品视频 | 老司机午夜剧场 | 日日爱666 | 天天天天天天干 | 国产又粗又硬又黄的视频 | av手机在线观看 | av成人资源| 狂野欧美性猛交xxⅹ李丽珍 | 四虎成人精品永久免费av九九 | 日韩欧美亚洲一区 | 中文字幕人妻一区 | 久久久久久av无码免费网站 | 深夜国产福利 | 欧美天堂| 娇小6一8小毛片 | hitomi一区二区三区精品 | 美女扒开尿口给男人桶 | 青草视频在线免费观看 | 一区二区三区四区在线 | 美女扒开腿男人爽桶 | 免费一级特黄特色毛片久久看 | 欧美日一区二区三区 | 亚洲黄色一级大片 | www.国产视频 | 亚洲成年人影院 | 欧美少妇激情 | 91精品国产乱码久久久久久久久 | 国产精品自拍视频一区 | 欧美日韩另类在线 | 亚洲av无码一区二区三区人 | 91嫩草视频在线观看 | 国产午夜一区二区三区 | xxxx国产视频 | 国内毛片毛片毛片 | 亚洲精品日韩在线 | 久久99草| 国产区欧美区日韩区 | 最新中文字幕在线视频 | 男女猛烈无遮挡 | 成人拍拍拍 | 日韩激情小视频 | 影音先锋中文字幕在线视频 | 中文字幕日韩久久 | 94av视频| 日韩中文字幕一区二区 | 精品视频久久久久久 | a毛片 | 中文字幕av一区二区三区 | 欧美日韩精品三区 | 日韩欧美一区二区三区久久婷婷 | 日产精品久久久一区二区 | 国产精品999在线观看 | 精品少妇一区二区三区在线观看 | 国产网址 | 精品熟妇一区二区三区 | 97国产精东麻豆人妻电影 | 精品视频第一页 | 久久人精品 | 国产高清一级片 | 国产精品久久久久久免费免熟 | 香蕉久久视频 | 可以看的黄色网 | 九九爱国产 | 国产又大又黄又粗 | 一区二区三区四区在线视频 | a极黄色片 | 色噜噜在线播放 | xx在线视频 | 一级全黄少妇性色生活片 | 日韩精品在线一区二区三区 | 日日爱视频 | 国产女厕一区二区三区在线视 | 亚洲午夜电影网 | 五月天婷婷激情视频 | 在线成人| 少妇人妻偷人精品视频蜜桃 | 久久综合激情网 | 九色porny原创自拍 | 亚洲乱码中文字幕 | 在线麻豆视频 | 国产精品久久久久久久久免费软件 | 亚洲成人不卡 | av在线小说 | 亚洲三级伦理 | 国产一区二区三区在线 | 筱田优av| 亚洲自拍三区 | 欧美三级一区 | 人人人妻人人澡人人爽欧美一区 | 韩国女同性做爰三级 | 欧美不卡三区 | 91中文字幕在线播放 | 3d动漫啪啪精品一区二区中文字幕 | 中文有码视频 | 成年人免费网址 | 欧美久久久影院 | 国产av成人一区二区三区高清 |