日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

GAN生成对抗网络-CGAN原理与基本实现-条件生成对抗网络04

發布時間:2024/9/15 编程问答 41 豆豆
生活随笔 收集整理的這篇文章主要介紹了 GAN生成对抗网络-CGAN原理与基本实现-条件生成对抗网络04 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

CGAN - 條件GAN

原始GAN的缺點






代碼實現

import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import matplotlib.pyplot as plt %matplotlib inline import numpy as np import glob gpu = tf.config.experimental.list_physical_devices(device_type='GPU') tf.config.experimental.set_memory_growth(gpu[0], True) import tensorflow.keras.datasets.mnist as mnist (train_image, train_label), (_, _) = mnist.load_data()


train_image = train_image / 127.5 - 1 train_image = np.expand_dims(train_image, -1) train_image.shape

dataset = tf.data.Dataset.from_tensor_slices((train_image, train_label)) AUTOTUNE = tf.data.experimental.AUTOTUNE

BATCH_SIZE = 256 image_count = train_image.shape[0] noise_dim = 50 dataset = dataset.shuffle(image_count).batch(BATCH_SIZE) def generator_model():seed = layers.Input(shape=((noise_dim,))) # 輸入 形狀長度為50的向量label = layers.Input(shape=(()))# 形狀為空# 輸入維度: 因0-9一共10個字符所以長度為10 映射成長度為50 輸入序列的長度為1 x = layers.Embedding(10, 50, input_length=1)(label)#嵌入層將正整數(下標)轉換為具有固定大小的向量x = layers.Flatten()(x)x = layers.concatenate([seed, x])# 與輸入的seed合并x = layers.Dense(3*3*128, use_bias=False)(x)# 使用dense層轉換成形狀3*3通道128 的向量 不使用偏值x = layers.Reshape((3, 3, 128))(x) # reshape成3*3*128 x = layers.BatchNormalization()(x)# 批標準化x = layers.ReLU()(x) # 使用relu激活x x = layers.Conv2DTranspose(64, (3, 3), strides=(2, 2), use_bias=False)(x)# 反卷積64個卷積核 卷積核大小(3*3) 跨度2x = layers.BatchNormalization()(x)# 批標準化x = layers.ReLU()(x) #使用relu激活x # 7*7 # 反卷積64個卷積核 卷積核大小(3*3) 跨度2 填充方式same 不適用偏值x = layers.Conv2DTranspose(32, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.ReLU()(x) # 14*14x = layers.Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)x = layers.Activation('tanh')(x)model = tf.keras.Model(inputs=[seed,label], outputs=x) # 創建模型 return model def discriminator_model():image = tf.keras.Input(shape=((28,28,1)))label = tf.keras.Input(shape=(()))x = layers.Embedding(10, 28*28, input_length=1)(label)x = layers.Reshape((28, 28, 1))(x)x = layers.concatenate([image, x])x = layers.Conv2D(32, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.LeakyReLU()(x)x = layers.Dropout(0.5)(x)x = layers.Conv2D(32*2, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.LeakyReLU()(x)x = layers.Dropout(0.5)(x)x = layers.Conv2D(32*4, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.LeakyReLU()(x)x = layers.Dropout(0.5)(x)x = layers.Flatten()(x)x1 = layers.Dense(1)(x)model = tf.keras.Model(inputs=[image, label], outputs=x1)return model generator = generator_model() discriminator = discriminator_model() binary_cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) category_cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) def discriminator_loss(real_output, fake_output):real_loss = binary_cross_entropy(tf.ones_like(real_output), real_output)fake_loss = binary_cross_entropy(tf.zeros_like(fake_output), fake_output)total_loss = real_loss + fake_lossreturn total_loss def generator_loss(fake_output):fake_loss = binary_cross_entropy(tf.ones_like(fake_output), fake_output)return fake_loss generator_optimizer = tf.keras.optimizers.Adam(1e-5) discriminator_optimizer = tf.keras.optimizers.Adam(1e-5) @tf.function def train_step(images, labels):batchsize = labels.shape[0]noise = tf.random.normal([batchsize, noise_dim])with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:generated_images = generator((noise, labels), training=True)real_output = discriminator((images, labels), training=True)fake_output = discriminator((generated_images, labels), training=True)gen_loss = generator_loss(fake_output)disc_loss = discriminator_loss(real_output, fake_output)gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) noise_dim = 50 num = 10 noise_seed = tf.random.normal([num, noise_dim]) cat_seed = np.random.randint(0, 10, size=(num, 1)) print(cat_seed.T)

def generate_images(model, test_noise_input, test_cat_input, epoch):print('Epoch:', epoch+1)# Notice `training` is set to False.# This is so all layers run in inference mode (batchnorm).predictions = model((test_noise_input, test_cat_input), training=False)predictions = tf.squeeze(predictions)fig = plt.figure(figsize=(10, 1))for i in range(predictions.shape[0]):plt.subplot(1, 10, i+1)plt.imshow((predictions[i, :, :] + 1)/2)plt.axis('off')# plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))plt.show() def train(dataset, epochs):for epoch in range(epochs):for image_batch, label_batch in dataset:train_step(image_batch, label_batch)if epoch%10 == 0:generate_images(generator, noise_seed, cat_seed, epoch)generate_images(generator, noise_seed, cat_seed, epoch) EPOCHS = 200 train(dataset, EPOCHS)



總結

以上是生活随笔為你收集整理的GAN生成对抗网络-CGAN原理与基本实现-条件生成对抗网络04的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。