Hadoop的伪分布式安装
===================主機環境配置開始===============================
step1:安裝VMware Workstation Pro
step2:安裝Ctenos7
step3:在VMware中更改虛擬機網絡類型為NAT方式(虛擬交換機的ip可以從vmvare的edit-->vertual network editor看到)
step4:修改網卡信息
#找到對應網卡cd /etc/sysconfig/network-scripts/ vi ifcfg-ens32
#修改為static
BOOTPROTO=static
#修改為yes
ONBOOT=yes
#追加以下信息(NAT設置中可以找到IP填入)
GATEWAY=192.168.163.2
IPADDR=192.168.163.128
NETMASK=255.255.255.0
DNS1=114.114.114.114
DNS2=8.8.8.8
ARPCHECK=no
step5:重啟網絡服務?service network restart (重啟之后可以ping一下是否通)
step6:修改主機名?vi /etc/sysconfig/network 添加一列?HOSTNAME=cMaster?
step7:修改主機名與IP映射,在root身份下 vi /etc/hosts? 添加一行 192.168.2.100??? cMaster
step8:關閉防火墻;
#查看防火墻狀態 service iptables status #臨時關閉防火墻 service iptables stop #關閉防火墻自動啟動 chkconfig iptables off======================主機環境完成================================
======================JDK安裝開始================================
step1:下載jdk
step2:解壓
step3:配置環境變量?vi /etc/profile (配置完成后執行?source /etc/profile 使其生效)
#配置環境變量 export JAVA_HOME=/home/ws/hadoopApp/jdk1.8.0_191 export HADOOP_HOME=/home/ws/hadoopApp/hadoop-3.0.2 export CLASSPATH=.:${JAVA_HOME}/lib.dt.jar:${JAVA_HOME}/lib/tools.jar=====================JDK安裝完成================================
====================Hadoop安裝配置開始==========================
step1:下載Hadoop
step2:解壓
step3:配置hadoop-env.sh(其配置文件均在hadoop-3.0.2/etc/hadoop下)
#修改JAVA_HOME為自定義安裝的路徑export JAVA_HOME=/home/ws/hadoopApp/jdk1.8.0_191
step4:配置?core-site.xml
#添加如下代碼<configuration><property><name>hadoop.tmp.dir</name><value>/home/ws/hadoopApp/cloudData</value></property><property><name>fs.defaultFS</name><value>hdfs://cMaster:9000/</value></property></configuration>step5:配置hdfs-site.xml
#添加如下代碼<configuration> <property><name>dfs.replication</name><value>1</value> </property><property><name>dfs.http.address</name><value>192.168.163.128:50070</value> </property></configuration>step6:配置mapred-site.xml(若文件名為mapred-site.xml.template,則先修改? mv mapred-site.xml.template mapred-site.xml?)
#添加如下代碼 <configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> </configuration>step7:配置yarn-site.xml
#添加如下代碼 <configuration><!-- Site specific YARN configuration properties --> <property> <name>yarn.resourcemanager.hostname</name> <value>cMaster</value> </property><property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property></configuration>step8:配置Hadoop環境變量(?vi /etc/profile 同java配置)
step9:創建公鑰 / 私鑰
#生成秘鑰 ssh-keygen -t rsa#創建authorized_keys文件并修改權限為600 cd .ssh touch authorized_keys chmod 600 authorized_keys
#將公鑰追加到authorized_keys文件中去 cat id_rsa.pub >> authorized_keys
#嘗試能否成功免密登錄 ssh cMaster
step10:初始化(格式化)
?hadoop namenode -format?
step11:啟動
?start-dfs.sh
start-yarn.sh?
step12:查看
?jps?
step13:訪問web管理頁面
?#輸入IP地址+端口號(50070)如: 192.168.163.128:5007?
step14:window下修改主機和IP映射
文件地址:?C:\Windows\System32\drivers\etc\hosts
====================Hadoop安裝配置j結束==========================
====================MapReduce測試==============================
?
使用MapReduce自帶的統計詞匯程序進行測試
step1:在hdfs下建立一個文件夾用于裝輸入文本
hadoop fs -mkdir hdfs://cmaster:9000/wordcount/inputstep2:將測試文件上傳
hadoop fs -put test.txt /wordcount/inputstep3:找到測試jar包
#hadoop-mapreduce-examples-3.0.2.jar測試jar包所在路徑 cd /home/ws/hadoopApp/hadoop-3.0.2/share/hadoop/mapreduce/step4:測試并將結果輸入到指定文件夾
hadoop jar hadoop-mapreduce-examples-3.0.2.jar wordcount /wordcount/input /wordcount/output注:測試時若報下列錯誤
[2018-11-18 20:57:15.662]Container exited with a non-zero exit code 1. Error file: prelaunch.err. Last 4096 bytes of prelaunch.err : Last 4096 bytes of stderr : 錯誤: 找不到或無法加載主類 org.apache.hadoop.mapreduce.v2.app.MRAppMaster解決辦法:
①輸入? hadoop classpath 得到classpath
②在yarn-site.xml 中添加下列代碼其中value就是classpath輸出結果
<property> <name>yarn.application.classpath</name> <value>/home/ws/hadoopApp/hadoop-3.0.2/etc/hadoop:/home/ws/hadoopApp/hadoop-3.0.2/share/hadoop/common/lib/*:/home/ws/hadoopApp/hadoop-3.0.2/share/hadoop/common/*:/home/ws/hadoopApp/hadoop-3.0.2/share/hadoop/hdfs:/home/ws/hadoopApp/hadoop-3.0.2/share/hadoop/hdfs/lib/*:/home/ws/hadoopApp/hadoop-3.0.2/share/hadoop/hdfs/*:/home/ws/hadoopApp/hadoop-3.0.2/share/hadoop/mapreduce/*:/home/ws/hadoopApp/hadoop-3.0.2/share/hadoop/yarn:/home/ws/hadoopApp/hadoop-3.0.2/share/hadoop/yarn/lib/*:/home/ws/hadoopApp/hadoop-3.0.2/share/hadoop/yarn/*</value> </property>?
step5:查看結果
#查看目錄hadoop fs -ls /wordcount/output #查看結果文件hadoop fs -cat /wordcount/output/part-r-00000或者在web端查看。
====================MapReduce測試結束==============================
?幾篇安裝參考網頁
https://blog.csdn.net/hliq5399/article/details/78193113
https://blog.csdn.net/boom_man/article/details/78192385
https://www.cnblogs.com/thousfeet/p/8618696.html
https://www.cnblogs.com/zhangyinhua/p/7647686.html#_lab2_0_1
轉載于:https://www.cnblogs.com/ws410/p/9979082.html
與50位技術專家面對面20年技術見證,附贈技術全景圖總結
以上是生活随笔為你收集整理的Hadoop的伪分布式安装的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: linux下卸载mysql(rpm)
- 下一篇: 分类与监督学习,朴素贝叶斯分类算法