日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

hdu 4418 高斯消元求期望

發布時間:2024/8/24 编程问答 34 如意码农
生活随笔 收集整理的這篇文章主要介紹了 hdu 4418 高斯消元求期望 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Time travel

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1480    Accepted Submission(s): 327

Problem Description

Agent K is one of the greatest agents in a secret organization called Men in Black. Once he needs to finish a mission by traveling through time with the Time machine. The Time machine can take agent K to some point (0 to n-1) on the timeline and when he gets to the end of the time line he will come back (For example, there are 4 time points, agent K will go in this way 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, ...). But when agent K gets into the Time machine he finds it has broken, which make the Time machine can't stop (Damn it!). Fortunately, the time machine may get recovery and stop for a few minutes when agent K arrives at a time point, if the time point he just arrive is his destination, he'll go and finish his mission, or the Time machine will break again. The Time machine has probability Pk% to recover after passing k time points and k can be no more than M. We guarantee the sum of Pk is 100 (Sum(Pk) (1 <= k <= M)==100). Now we know agent K will appear at the point X(D is the direction of the Time machine: 0 represents going from the start of the timeline to the end, on the contrary 1 represents going from the end. If x is the start or the end point of the time line D will be -1. Agent K want to know the expectation of the amount of the time point he need to pass before he arrive at the point Y to finish his mission.
If finishing his mission is impossible output "Impossible !" (no quotes )instead.
 
Input
There is an integer T (T <= 20) indicating the cases you have to solve. The first line of each test case are five integers N, M, Y, X .D (0< N,M <= 100, 0 <=X ,Y < 100 ). The following M non-negative integers represent Pk in percentile.
 
Output
For each possible scenario, output a floating number with 2 digits after decimal point
If finishing his mission is impossible output one line "Impossible !" 
(no quotes )instead.
 
Sample Input
2
4 2 0 1 0
50 50
4 1 0 2 1
100
 
Sample Output
8.14
2.00
 
Source
2012 ACM/ICPC Asia Regional Hangzhou Online

題意:一個人在數軸上來回走,以pi的概率走i步i∈[1, m],給定n(數軸長度),m,e(終點),s(起點),d(方向),求從s走到e經過的點數期望

解析:設E[x]是人從x走到e經過點數的期望值,顯然對于終點有:E[e] = 0

一般的:E[x] = sum((E[x+i]+i) * p[i])(i∈[1, m]) (走i步經過i個點,所以是E[x+i]+i)

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
using namespace std; const int maxn=;
const double eps=1e-;
int map[maxn],flag[maxn];
double p[maxn],A[maxn][maxn];
int cnt,n,m,st,ed,d;
int dcmp(double x)
{
if(fabs(x)<eps) return ;
else if(x->eps) return ;
return -;
}
void swap(double &a,double &b){double t=a;a=b;b=t;} bool bfs()
{
memset(flag,-,sizeof(flag));
queue<int>Q;
cnt=;flag[st]=cnt++;
Q.push(st);
bool ret=false;
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=;i<=m;i++)
{
int v=(u+i)%(*n-);
if(dcmp(p[i])==) continue;
if(flag[v]!=-) continue;
flag[v]=cnt++;
if(map[v]==ed) ret=true;
Q.push(v);
}
}
return ret;
} void bulidmatrix()
{
memset(A,,sizeof(A));
for(int i=;i<*n-;i++)
{
if(flag[i]==-) continue;
int u=flag[i];A[u][u]=;
if(map[i]==ed){A[u][cnt]=;continue;}
for(int j=;j<=m;j++)
{
int v=(i+j)%(*n-);
if(flag[v]==-) continue;
v=flag[v];
A[u][v]-=p[j];A[u][cnt]+=p[j]*j;
}
}
} void gauss(int n)
{
int i,j,k,r;
for(i=;i<n;i++)
{
r=i;
for(j=i+;j<n;j++)
if(fabs(A[j][i])>fabs(A[r][i])) r=j;
if(dcmp(A[r][i])==) continue;
if(r!=i) for(j=;j<=n;j++) swap(A[r][j],A[i][j]);
for(k=;k<n;k++) if(k!=i)
for(j=n;j>=i;j--) A[k][j]-=A[k][i]/A[i][i]*A[i][j];
}
} int main()
{
int i,j,t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d%d",&n,&m,&ed,&st,&d);
for(i=;i<=m;i++){ scanf("%lf",p+i);p[i]/=;}
if(st==ed){ printf("0.00\n");continue;}
for(i=;i<n;i++) map[i]=i;
for(i=n,j=n-;i<*n-;i++,j--) map[i]=j;
if(d==) st=*n--st;
if(!bfs()){ printf("Impossible !\n");continue;}
bulidmatrix();gauss(cnt);
for(i=cnt-;i>=;i--)
{
for(j=i+;j<cnt;j++)
A[i][cnt]-=A[j][cnt]*A[i][j];
A[i][cnt]/=A[i][i];
}
printf("%.2lf\n",A[][cnt]);
}
return ;
}

總結

以上是生活随笔為你收集整理的hdu 4418 高斯消元求期望的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。