日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

SLS机器学习最佳实战:日志聚类+异常告警

發布時間:2024/8/23 编程问答 39 豆豆
生活随笔 收集整理的這篇文章主要介紹了 SLS机器学习最佳实战:日志聚类+异常告警 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

0.文章系列鏈接

  • SLS機器學習介紹(01):時序統計建模
  • SLS機器學習介紹(02):時序聚類建模
  • SLS機器學習介紹(03):時序異常檢測建模
  • SLS機器學習介紹(04):規則模式挖掘
  • SLS機器學習介紹(05):時間序列預測

  • 一眼看盡上億日志-SLS智能聚類(LogReduce)發布
  • SLS機器學習最佳實戰:時序異常檢測和報警
  • SLS機器學習最佳實戰:時序預測

1.手中的錘子都有啥?

圍繞日志,挖掘其中更大價值,一直是我們團隊所關注。在原有日志實時查詢基礎上,今年SLS在DevOps領域完善了如下功能:

  • 上下文查詢
  • 實時Tail和智能聚類,以提高問題調查效率
  • 提供多種時序數據的異常檢測和預測函數,來做更智能的檢查和預測
  • 數據分析的結果可視化
  • 強大的告警設置和通知,通過調用webhook進行關聯行動

今天我們重點介紹下,日志只能聚類和異常告警如何配合,更好的進行異常發現和告警

2.平臺實驗

2.1 實驗數據

一份Sys Log的原始數據,,并且開啟了日志聚類服務,具體的狀態截圖如下:

通過調整下面截圖中紅色框1的大小,可以改變圖中紅色框2的結果,但是對于每個最細粒度的pattern并不會改變,也就是說:子Pattern的結果是穩定且唯一的,我們可以通過子Pattern的Signature找到對應的原始日志條目。

2.2 生成子模式的時序信息

假設,我們對這個子Pattern要進行監控:

msg:vm-111932.tc su: pam_unix(*:session): session closed for user root
對應的 signature_id : __log_signature__: 1814836459146662485

我們得到了上述pattern對應的原始日志,可以看下具體的數量在時間軸上的直返圖:

上圖中,我們可以發現,這個模式的日志分布不是很均衡,其中還有一些是沒有的,如果直接按照時間窗口統計數量,得到的時序圖如下:

__log_signature__: 1814836459146662485 | select date_trunc('minute', __time__) as time, COUNT(*) as num from log GROUP BY time order by time ASC limit 10000

上述圖中我們發現時間上并不是連續的。因此,我們需要對這條時序進行補點操作。

__log_signature__: 1814836459146662485 | select time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, avg(num) as num from ( select __time__ - __time__ % 60 as time, COUNT(*) as num from log GROUP BY time order by time desc ) GROUP by time order by time ASC limit 10000

2.3 對時序進行異常檢測

使用時序異常檢測函數: ts_predicate_arma

__log_signature__: 1814836459146662485 | select ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') from ( select time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, avg(num) as num from ( select __time__ - __time__ % 60 as time, COUNT(*) as num from log GROUP BY time order by time desc ) GROUP by time order by time ASC ) limit 10000

2.4 告警該如何設置

  • 將機器學習函數的結果拆解開
__log_signature__: 1814836459146662485 | select t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob from ( select ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res from ( select time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, avg(num) as num from ( select __time__ - __time__ % 60 as time, COUNT(*) as num from log GROUP BY time order by time desc ) GROUP by time order by time ASC )) , unnest(res) as t(t1)

  • 針對最近兩分鐘的結果進行告警
__log_signature__: 1814836459146662485 | select unixtime, src, pred, up, lower, prob from ( select t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob from ( select ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res from ( select time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, avg(num) as num from ( select __time__ - __time__ % 60 as time, COUNT(*) as num from log GROUP BY time order by time desc ) GROUP by time order by time ASC )) , unnest(res) as t(t1) ) where is_nan(src) = false order by unixtime desc limit 2

  • 針對上升點進行告警,并設置兜底策略
__log_signature__: 1814836459146662485 | select sum(prob) as sumProb, max(src) as srcMax, max(up) as upMax from ( select unixtime, src, pred, up, lower, prob from ( select t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob from ( select ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res from ( select time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, avg(num) as num from ( select __time__ - __time__ % 60 as time, COUNT(*) as num from log GROUP BY time order by time desc ) GROUP by time order by time ASC )) , unnest(res) as t(t1) ) where is_nan(src) = false order by unixtime desc limit 2 )

具體的告警設置如下:


3.硬廣時間

3.1 日志進階

這里是日志服務的各種功能的演示?日志服務整體介紹,各種Demo


原文鏈接
本文為云棲社區原創內容,未經允許不得轉載。

創作挑戰賽新人創作獎勵來咯,堅持創作打卡瓜分現金大獎

總結

以上是生活随笔為你收集整理的SLS机器学习最佳实战:日志聚类+异常告警的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。