日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Spark 运行内存不足Not enough space to cache rdd in memory,Container killed by YARN for exceeding memory

發布時間:2024/8/23 编程问答 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Spark 运行内存不足Not enough space to cache rdd in memory,Container killed by YARN for exceeding memory 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

日志報錯(WARN類型最后執行成功可以忽略):

19/04/15 12:35:37 INFO memory.MemoryStore: Will not store rdd_2_5119/04/15 12:35:37 WARN memory.MemoryStore: Not enough space to cache rdd_2_51 in memory! (computed 1109.7 MB so far)19/04/15 12:35:37 INFO memory.MemoryStore: Memory use = 627.7 MB (blocks) + 1109.7 MB (scratch space shared across 1 tasks(s)) = 1737.4 MB. Storage limit = 2004.6 MB.19/04/15 12:35:37 WARN storage.BlockManager: Persisting block rdd_2_51 to disk instead.19/04/15 13:01:46 INFO zookeeper.ReadOnlyZKClient: Close zookeeper connection 0x331abd57 to fwqml016.zh:2181,fwqml018.zh:2181,fwqml009.zh:218119/04/15 13:01:49 INFO memory.MemoryStore: Will not store rdd_2_5119/04/15 13:01:49 WARN memory.MemoryStore: Not enough space to cache rdd_2_51 in memory! (computed 1109.7 MB so far)19/04/15 13:01:49 INFO memory.MemoryStore: Memory use = 627.7 MB (blocks) + 1109.7 MB (scratch space shared across 1 tasks(s)) = 1737.4 MB. Storage limit = 2004.6 MB.

webUI頁面報錯:

異常提示內存空間不足

解決方法:

1.將"spark.yarn.executor.memoryOverhead"設置為最大值,可以考慮一下4096。這個數值一般都是2的次冪。

2.將rdd進行重新分區,這里可以考慮200k。在spark2.3的版本中,rdd成為了dateframe格式的數據。

3.將"executor.cores"從8設置為4。將core的個數調小,防止cpu不足。

4.將"executor.memory"從8g設置為12g。將內存調大。

?

一般引起內存的問題都可使用該參數進行調整,

如常見異常:

WARN yarn.YarnAllocator: Container killed by YARN for exceeding memory limits. 2.2 GB of 2.1 GB virtual memory used. Consider boosting spark.yarn.executor.memoryOverhead.

當executor的內存使用大于executor-memory與executor.memoryOverhead的加和時,Yarn會干掉這些executor,

修改上面描述參數也可以解決該問題

?

?

最初導致異常提交的配置為:

spark-submit \ --master yarn \ --deploy-mode cluster \ --class com.data.filter.ArticleFilter \ --jars $(echo ./lib/*.jar | tr ' ' ',') \ --num-executors 50 \ --executor-cores 2 \ --conf spark.yarn.queue=etl \ --executor-memory 4g \ --driver-memory 1g \ --conf spark.kryoserializer.buffer.max=2000 \ --conf spark.akka.frameSize=500 \ --conf spark.sql.shuffle.partitions=100 \ --conf spark.default.parallelism=100 \ --conf spark.storage.memoryFraction=0.3 \ --conf spark.shuffle.memoryFraction=0.7 \ --conf spark.shuffle.safetyFraction=0.8 \ --conf spark.shuffle.spill=true \ --conf spark.yarn.queue=etl \ --conf spark.serializer=org.apache.spark.serializer.KryoSerializer \ ./data-filter.jar

修改Executor-memory后執行成功的參數,修改為 --executor-memory 8g?

spark-submit \ --master yarn \ --deploy-mode cluster \ --class com.data.filter.ArticleFilter \ --jars $(echo ./lib/*.jar | tr ' ' ',') \ --num-executors 50 \ --executor-cores 2 \ --conf spark.yarn.queue=etl \ --executor-memory 8g \ --driver-memory 1g \ --conf spark.kryoserializer.buffer.max=2000 \ --conf spark.akka.frameSize=500 \ --conf spark.sql.shuffle.partitions=100 \ --conf spark.default.parallelism=100 \ --conf spark.storage.memoryFraction=0.3 \ --conf spark.shuffle.memoryFraction=0.7 \ --conf spark.shuffle.safetyFraction=0.8 \ --conf spark.shuffle.spill=true \ --conf spark.yarn.queue=etl \ --conf spark.serializer=org.apache.spark.serializer.KryoSerializer \ ./data-filter.jar

或修改--conf spark.yarn.executor.memoryOverhead=4096參數同樣也執行成功了

spark-submit \ --master yarn \ --deploy-mode cluster \ --class com.data.filter.ArticleFilter \ --jars $(echo ./lib/*.jar | tr ' ' ',') \ --num-executors 50 \ --executor-cores 2 \ --conf spark.yarn.queue=etl \ --executor-memory 4g \ --driver-memory 1g \ --conf spark.yarn.executor.memoryOverhead=4096 \ --conf spark.kryoserializer.buffer.max=2000 \ --conf spark.akka.frameSize=500 \ --conf spark.sql.shuffle.partitions=100 \ --conf spark.default.parallelism=100 \ --conf spark.storage.memoryFraction=0.3 \ --conf spark.shuffle.memoryFraction=0.7 \ --conf spark.shuffle.safetyFraction=0.8 \ --conf spark.shuffle.spill=true \ --conf spark.yarn.queue=etl \ --conf spark.serializer=org.apache.spark.serializer.KryoSerializer \ ./data-filter.jar

?

?

總結

以上是生活随笔為你收集整理的Spark 运行内存不足Not enough space to cache rdd in memory,Container killed by YARN for exceeding memory的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。