日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > pytorch >内容正文

pytorch

以撩妹为例,5分钟让你秒懂深度学习!

發布時間:2024/8/23 pytorch 33 豆豆
生活随笔 收集整理的這篇文章主要介紹了 以撩妹为例,5分钟让你秒懂深度学习! 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.


以撩妹為例,5分鐘讓你秒懂深度學習!

今天,面對 AI 如此重要的江湖地位,深度學習作為重要的一個研究分支,幾乎出現在當下所有熱門的 AI 應用領域,其中包含語義理解、圖像識別、語音識別,自然語言處理等等,更有人認為當前的人工智能等同于深度學習領域。


如果在這個人工智能的時代,作為一個有理想抱負的程序員,或者學生、愛好者,不懂深度學習這個超熱的話題,似乎已經跟時代脫節了。



但是,深度學習對數學的要求,包括微積分、線性代數和概率論與數理統計等,讓大部分的有理想抱負青年踟躕前行。那么問題來了,理解深度學習,到底需不需要這些知識?


關于深度學習,網上的資料很多,不過大部分都不太適合初學者。楊老師總結了幾個原因:


深度學習確實需要一定的數學基礎。如果不用深入淺出地方法講,有些讀者就會有畏難的情緒,因而容易過早地放棄。


中國人或美國人寫的書籍或文章,普遍比較難。


深度學習所需要的數學基礎并沒有想象中的那么難,只需要知道導數和相關的函數概念即可。假如你高等數學也沒學過,很好,這篇文章其實是想讓文科生也能看懂,只需要學過初中數學。


不必有畏難的情緒,我比較推崇李書福的精神,在一次電視采訪中,李書福說:誰說中國人不能造汽車?造汽車有啥難的,不就是四個輪子加兩排沙發嘛。當然,他這個結論有失偏頗,不過精神可嘉。


“王小二賣豬”解讀深度學習之導數

導數是什么?


無非就是變化率,比如:王小二今年賣了 100 頭豬,去年賣了 90 頭,前年賣了 80 頭。。。變化率或者增長率是什么?每年增長 10 頭豬,多簡單。


這里需要注意有個時間變量—年。王小二賣豬的增長率是 10頭/年,也就是說,導數是 10。


函數 y = f(x) = 10x + 30,這里我們假設王小二第一年賣了 30 頭,以后每年增長 10 頭,x代表時間(年),y代表豬的頭數。

當然,這是增長率固定的情形,而現實生活中,很多時候,變化量也不是固定的,也就是說增長率不是恒定的。


比如,函數可能是這樣: y = f(x) = 5x2 + 30,這里 x 和 y 依然代表的是時間和頭數,不過增長率變了,怎么算這個增長率,我們回頭再講。或者你干脆記住幾個求導的公式也可以。



深度學習還有一個重要的數學概念:偏導數


偏導數的偏怎么理解?偏頭疼的偏,還是我不讓你導,你偏要導?


都不是,我們還以王小二賣豬為例,剛才我們講到,x 變量是時間(年),可是賣出去的豬,不光跟時間有關啊,隨著業務的增長,王小二不僅擴大了養豬場,還雇了很多員工一起養豬。


所以方程式又變了:y = f(x) = 5x?2 + 8x? + 35x? + 30


這里 x? 代表面積,x? 代表員工數,當然 x? 還是時間。


以撩妹為例,解讀深度學習之“偏導數”


偏導數是什么


偏導數無非就是多個變量的時候,針對某個變量的變化率。在上面的公式里,如果針對 x? 求偏導數,也就是說,員工對于豬的增長率貢獻有多大。


或者說,隨著(每個)員工的增長,豬增加了多少,這里等于 35—每增加一個員工,就多賣出去 35 頭豬。


計算偏導數的時候,其他變量都可以看成常量,這點很重要,常量的變化率為 0,所以導數為 0,所以就剩對 35x? 求導數,等于 35。對于 x? 求偏導,也是類似的。


求偏導,我們用一個符號表示:比如 y / x? 就表示 y 對 x? 求偏導。



廢話半天,這些跟深度學習到底有啥關系?當然有關系,深度學習是采用神經網絡,用于解決線性不可分的問題。


這里我主要講講數學與深度學習的關系。先給大家看幾張圖:

圖1:所謂深度學習,就是具有很多個隱層的神經網絡

圖2:單輸出的時候,怎么求偏導數

圖3:多輸出的時候,怎么求偏導數


后面兩張圖是日本人寫的關于深度學習的書里面的兩張圖片。所謂入力層,出力層,中間層,分別對應于中文的:輸入層,輸出層,和隱層。


大家不要被這幾張圖嚇著,其實很簡單,就以撩妹為例。男女戀愛我們大致可以分為三個階段:


初戀期。相當于深度學習的輸入層。別人吸引你,肯定是有很多因素,比如:身高,身材,臉蛋,學歷,性格等等,這些都是輸入層的參數,對每個人來說權重可能都不一樣。


熱戀期。我們就讓它對應隱層吧!這個期間,雙方各種磨合,柴米油鹽醬醋茶。


穩定期。對應輸出層,是否合適,就看磨合得咋樣了。大家都知道,磨合很重要,怎么磨合呢?就是不斷學習訓練和修正的過程!


比如女朋友喜歡草莓蛋糕,你買了藍莓的,她的反饋是 negative,你下次就別買了藍莓,改草莓了。


看完這個,有些小伙可能要開始對自己女友調參了。有點不放心,所以補充一下。撩妹和深度學習一樣,既要防止欠擬合,也要防止過擬合。


所謂欠擬合,對深度學習而言,就是訓練得不夠,數據不足,就好比,你撩妹經驗不足。要做到擬合,送花當然是最基本的,還需要提高其他方面,比如,提高自身說話的幽默感等。這里需要提一點,欠擬合固然不好,但過擬合就更不合適了。


過擬合跟欠擬合相反,一方面,如果過擬合,她會覺得你有陳冠希老師的潛質,更重要的是,每個人情況不一樣,就像深度學習一樣,訓練集效果很好,但測試集不行!


就撩妹而言,她會覺得你受前任(訓練集)影響很大,這是大忌!如果給她這個印象,你以后有的煩了,切記切記!


深度學習也是一個不斷磨合的過程,剛開始定義一個標準參數(這些是經驗值,就好比情人節和生日必須送花一樣),然后不斷地修正,得出圖 1 每個節點間的權重。


為什么要這樣磨合?試想一下,我們假設深度學習是一個小孩,我們怎么教他看圖識字?


肯定得先把圖片給他看,并且告訴他正確的答案,需要很多圖片,不斷地教他,訓練他,這個訓練的過程,其實就類似于求解神經網絡權重的過程。以后測試的時候,你只要給他圖片,他就知道圖里面有什么了。


所以訓練集,其實就是給小孩看帶有正確答案的圖片,對于深度學習而言,訓練集就是用來求解神經網絡的權重,最后形成模型;而測試集,就是用來驗證模型的準確度。


對于已經訓練好的模型,如下圖所示,權重(w1,w2…)都已知。

圖4

圖5


像上面這樣,從左至右容易算出來。但反過來,測試集有圖片,也有預期的正確答案,要反過來求 w1,w2……,怎么辦?

怎么求偏導數?


繞了半天,終于該求偏導出場了。目前的情況是:


我們假定一個神經網絡已經定義好,比如有多少層,每層有多少個節點,也有默認的權重和激活函數等。輸入(圖像)確定的情況下,只有調整參數才能改變輸出的值。怎么調整,怎么磨合?


每個參數都有一個默認值,我們就對每個參數加上一定的數值?,然后看看結果如何?如果參數調大,差距也變大,那就得減小?,因為我們的目標是要讓差距變小;反之亦然。


所以為了把參數調整到最佳,我們需要了解誤差對每個參數的變化率,這不就是求誤差對于該參數的偏導數嗎?


這里有兩個點:一個是激活函數,主要是為了讓整個網絡具有非線性特征。我們前面也提到了,很多情況下,線性函數沒辦法對輸入進行適當的分類(很多情況下識別主要是做分類)。


那么就要讓網絡學出來一個非線性函數,這里就需要激活函數,因為它本身就是非線性的,所以讓整個網絡也具有了非線性特征。


另外,激活函數也讓每個節點的輸出值在一個可控的范圍內,計算也方便。


貌似這樣解釋還是很不通俗,其實還可以用撩妹來打比方:女生都不喜歡白開水一樣的日子,因為這是線性的,生活中當然需要一些浪漫情懷了,這個激活函數嘛,我感覺類似于生活中的小浪漫,小驚喜。


相處的每個階段,需要時不時激活一下,制造點小浪漫,小驚喜。比如,一般女生見了可愛的小杯子,瓷器之類都邁不開步子,那就在她生日的時候送一個特別樣式,讓她感動得想哭。


前面講到男人要幽默,這是為了讓她笑,適當的時候還要讓她激動得哭。一哭一笑,多整幾個回合,她就離不開你了。因為你的非線性特征太強了。


當然,過猶不及,小驚喜也不是越多越好,但完全沒有就成白開水了。就好比每個 layer 都可以加激活函數,當然,不見得每層都要加激活函數,但完全沒有,那是不行的。


關鍵是怎么求偏導。圖 2 和圖 3 分別給了推導的方法,其實很簡單,從右至左挨個求偏導就可以。相鄰層的求偏導很簡單,因為是線性的,所以偏導數其實就是參數本身嘛,就跟求解 x? 的偏導類似。然后把各個偏導相乘就可以了。


這里有兩個點:一個是激活函數,其實激活函數也沒啥,就是為了讓每個節點的輸出都在 0 到 1 的區間,這樣好算賬,所以在結果上面再做了一層映射,都是一對一的。


由于激活函數的存在,在求偏導的時候,也要把它算進去,激活函數,一般用 sigmoid,也可以用 Relu 等。激活函數的求導其實也非常簡單:


求導: f'(x)=f(x)*[1-f(x)]


這個方面,有時間可以翻看一下高數,如果沒時間,直接記住就行了。至于 Relu,那就更簡單了,就是 f(x) 當 x<0 的時候 y 等于 0,其他時候,y 等于 x。


當然,你也可以定義你自己的 Relu 函數,比如 x 大于等于 0 的時候,y 等于 0.01x,也可以。

什么是學習系數?


另一個是學習系數,為什么叫學習系數?


剛才我們上面講到?增量,到底每次增加多少合適?是不是等同于偏導數(變化率)?


經驗告訴我們,需要乘以一個百分比,這個就是學習系數,而且,隨著訓練的深入,這個系數是可以變的。


當然,還有一些很重要的基本知識,比如 SGD(隨機梯度下降),mini batch 和 epoch(用于訓練集的選擇)。


上面描述的內容,主要是關于怎么調整參數,屬于初級階段。上面也提到,在調參之前,都有默認的網絡模型和參數,如何定義最初始的模型和參數?就需要進一步深入了解。


不過,對于一般做工程而言,只需要在默認的網絡上調參就可以,相當于使用算法;對于學者和科學家而言,他們會發明算法,這有很大的難度。向他們致敬!


End.

來源:數盟


--------------------

黎曼,歐拉,傅里葉竟每每被提及!神秘的群里竟然反復出現應數、建模、數統!里面究竟隱藏著什么秘密?來來來——算法與數學之美數學粉絲群成立啦!

下方高能!!!

數學粉絲qq群號:602146986 。

微信群請掃描下方二維碼!

算法數學之美微信公眾號歡迎賜稿

稿件涉及數學、物理、算法、計算機、編程等相關領域。

稿件一經采用,我們將奉上稿酬。

投稿郵箱:math_alg@163.com

總結

以上是生活随笔為你收集整理的以撩妹为例,5分钟让你秒懂深度学习!的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。