AVOD
一,安裝依賴
avod需要使用python3,所以要使用pip3安裝依賴庫
<span style="color:#000000">pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple sklearn pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple pandas pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple pillow pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple scipy pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple protobuf==3.2.0 pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-build pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python 二,安裝tensorflow-gpu 使用阿里鏡像安裝gpu版的tensorflow,注意版本要是1.13.0,tensorflow依賴protobuf和numpy,會自動再安裝一遍,命令如下: pip3 install --ignore-installed --upgrade tensorflow-gpu<code>==1.13.0</code> -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com pip忽略依賴命令:</span>pip3 install package --no-dependencies
<span style="color:#000000">二,下載數據集 1,在/home/username/目錄下創建目錄/Kitti/object/ 2,下載地址 <span style="color:#000080"><u><a data-cke-saved-href="https://link.zhihu.com/?target=http%3A//www.cvlibs.net/datasets/kitti/eval_object.php%3Fobj_benchmark%3D3d" href="https://link.zhihu.com/?target=http%3A//www.cvlibs.net/datasets/kitti/eval_object.php%3Fobj_benchmark%3D3d">https://link.zhihu.com/?target=http%3A//www.cvlibs.net/datasets/kitti/eval_object.php%3Fobj_benchmark%3D3d</a></u></span> 3,下載如下紅框的文件4,解壓放到目錄/Kitti/object/下三,將avod目錄加到環境變量中 export PYTHONPATH=$PYTHONPATH:'/home/vking/codespace/avod-master/wavedata' export PYTHONPATH=$PYTHONPATH:'/home/vking/codespace/avod-master'<code><span style="color:#121212">四,編譯</span></code><code>.proto</code><code>文件</code> <code><span style="color:#121212">protoc avod/protos/*.proto –python_out=.</span></code> <code><span style="color:#121212">如果</span></code><code><span style="color:#121212">protoc</span></code><code><span style="color:#121212">版本不對,從如下地址下載對應版本</span></code> <code><a data-cke-saved-href="https://github.com/protocolbuffers/protobuf/releases/tag/v3.2.0" href="https://github.com/protocolbuffers/protobuf/releases/tag/v3.2.0"><span style="color:#121212">https://github.com/protocolbuffers/protobuf/releases/tag/v3.2.0</span></a></code> <code><span style="color:#121212">下載后解壓,</span></code><code><span style="color:#121212">bin</span></code><code><span style="color:#121212">目錄下有個</span></code><code><span style="color:#121212">protoc</span></code><code><span style="color:#121212">文件,使用該文件編譯</span></code><code><span style="color:#121212">.proto</span></code><code><span style="color:#121212">文件</span></code> <code><span style="color:#121212">/home/username/opensource/protoc-3.2.0/bin/protoc avod/protos/*.proto –python_out=.</span></code> <code><span style="color:#121212">avod</span></code><code><span style="color:#121212">的</span></code><code><span style="color:#121212">proto</span></code><code><span style="color:#121212">文件中可能頭部需要加</span></code><code><span style="color:#121212">syntax = "proto2";</span></code>五,生成RPN所需數據 <code><span style="color:#121212">python3 scripts/preprocessing/gen_mini_batches.py</span></code><code><span style="color:#121212">六,訓練</span></code> <code>python3 avod/experiments/run_training.py --pipeline_config=avod/configs/pyramid_cars_with_aug_example.config --device='0' –data_split='train'</code> </span>1,show_predictions_2d.py
?
KittiDatasetConfig對應文件avod/protos/kitti_dataset.proto, kitti_dataset.proto中default表示屬性的默認值,dataset_dir表示數據集存儲的目錄,默認為~/Kitti/object,在KittiDataset類的構造函數中會使用 expanduser來對符號~進行轉換
self.dataset_dir = os.path.expanduser(self.config.dataset_dir)
最終dataset_dir會變成/home/username/Kitti/object
總結
- 上一篇: 视频教程-8086汇编语言讲座-其他
- 下一篇: VS 2010 快捷键