日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

贪心算法+回溯算法+动态规划

發布時間:2024/7/23 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 贪心算法+回溯算法+动态规划 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

一.貪心算法

1.分餅干問題

#思路:排序加貪心 先讓胃口小的孩子滿足 class Solution:def findContentChildren(self, g, s):print('==g:', g)print('==s:', s)g = sorted(g)#孩子s = sorted(s)#餅干res = 0for j in range(len(s)):#遍歷餅干 先給胃口小的分配if res<len(g):if g[res]<=s[j]:res+=1print('==res:', res)return resg = [1,2] s = [1,2,3] # g = [1, 2, 3] # s = [1, 1] sol = Solution() sol.findContentChildren(g, s)

2.錢幣找零問題

用最少的紙幣來支付同等的金錢。

class Solution:def coinChange_2(self, coins, amount):coins=sorted(coins,reverse=True)print(coins)five_number=0two_number=0one_number=0while amount>=coins[0]:five_number+=1amount-=coins[0]# print('five_number:',five_number)# print(amount)while amount>=coins[1]:two_number+=1amount-=coins[1]# print('two__number:',two_number)# print(amount)while amount>=coins[-1]:one_number+=1amount-=coins[-1]# print('one__number:',one_number)# print(amount)return five_number,two_number,one_number coins = [1, 2, 5] amount = 11 sol = Solution() five_number,two_number,one_number = sol.coinChange_2(coins, amount) print('five_number:',five_number) print('two_number:',two_number) print('one_number:',one_number)

3.區間覆蓋

假設我們有 n 個區間,區間的起始端點和結束端點分別是 [l1, r1],[l2, r2],[l3, r3],……,[...

我們從這 n 個區間中選出一部分區間,這部分區間滿足兩兩不相交,端點相交不算,最多有多少區間;

這個問題主要在于右端點選小的,使右邊能夠有更大的區間覆蓋。

4,霍夫曼編碼(用于數據壓縮)

假設1000個字符,每個字符占一個1個byte,一個byte=8bits,那么存儲這1000個就要8000bits,怎么節省呢?

發現這1000個字符只有a,b,c,d,e,f六種不同的字符,所以可以用三個二進制來表示,這樣空間就壓縮到了3000bits,

根據貪心算法,出現字符頻率次數多的,用稍微短的編碼,而出現字符頻率次數少的,用稍微長的編碼,

例題1:

N = int(input()) line = [] for i in range(N):a, b = sorted(list(map(int, input().split(' '))))line.append([a, b]) print(line)# line=[[3, 6], [1, 3], [2, 5]] line = sorted(line, key=lambda x: x[1]) print('line=', line)ret = [line[0]] print('ret=', ret) for item in line[1:]:print('item=', item)if ret[-1][1] > item[0]:passelse:ret.append(item) print(ret) print(len(ret))

例題2:假設小偷有一個背包,最多能裝20公斤贓物,他闖入一戶人家,發現如下表所示的物品。很顯然,他不能把所有物品都裝進背包,所以必須確定拿走哪些物品,留下哪些物品。

名稱價格(美元)重量(kg)
電腦20020
收音機204
17510
花瓶502
101
油畫909
class Thing(object):"""物品"""def __init__(self, name, price, weight):self.name = nameself.price = priceself.weight = weight@propertydef value(self):"""價格重量比"""return self.price / self.weightdef input_thing():"""輸入物品信息"""name_str, price_str, weight_str = input().split()return name_str, int(price_str), int(weight_str)###貪心算法 根據單位價值進行選擇 # a 200 20 # b 20 4 # c 175 10 # d 50 2 # e 10 1 # f 90 9 def main():max_weight, num_of_things = map(int, input().split())# max_weight, num_of_things=20,6print('max_weight',max_weight)print('num_of_things',num_of_things)all_things = []for _ in range(num_of_things):all_things.append(Thing(*input_thing()))#根據價值排序all_things.sort(key=lambda x: x.value, reverse=True)print(all_things[0].name)print(all_things[0].price)print(all_things[0].weight)total_weight = 0total_price = 0choice_thing=[]for thing in all_things:if total_weight + thing.weight <= max_weight:total_weight+=thing.weighttotal_price += thing.pricechoice_thing.append(thing)print('總價值=',total_price)print('偷走的物品是')for i in choice_thing:print(i.name,i.price,i.weight)if __name__ == '__main__':main()

二.回溯算法

《蝴蝶效應》,講的就是主人公為了達到自己的目標,一直通過回溯的方法,回到童年,在關鍵的岔路口,重新做選擇。

背包總的承載重量是 Ckg?,F在我們有 n 個物品,每個物品的重量不一樣,并且不能分割,選哪幾種才能讓背包的總重量最大,且背包不會壞。

bestV = 0 curW = 0 curV = 0 bestx = Nonedef backtrack(i):global bestV, curW, curV, x, bestxif i >= n:if bestV < curV:bestV = curVbestx = x[:]else:if curW + w[i] <= c:x[i] = TruecurW += w[i]curV += v[i]backtrack(i + 1)curW -= w[i]curV -= v[i]x[i] = Falsebacktrack(i + 1)if __name__ == '__main__':#實現選擇最大價值的物品,且背包不會壞n = 5 #5個物品c = 10 #背包最大承重w = [2, 2, 6, 5, 4] #每個物品重量v = [6, 3, 5, 4, 6] #每個物品價值x = [False for i in range(n)]backtrack(0)print(bestV)print(bestx)

2.電話號碼的字母組合

https://leetcode-cn.com/problems/permutations/solution/hui-su-suan-fa-xiang-jie-by-labuladong-2/

class Solution:def backtrace(self, digits, track):if len(digits) == 0:#滿足終止條件self.res.append(track)returnfor letter in self.phone[digits[0]]:# for循環去遍歷選擇條件store = track#保存中間結果用于回溯track += letterself.backtrace(digits[1:], track)track = store#恢復中間結果回溯def letterCombinations(self, digits):self.res = []if len(digits) == 0:return self.resself.phone = {'2': ['a', 'b', 'c'],'3': ['d', 'e', 'f'],'4': ['g', 'h', 'i'],'5': ['j', 'k', 'l'],'6': ['m', 'n', 'o'],'7': ['p', 'q', 'r', 's'],'8': ['t', 'u', 'v'],'9': ['w', 'x', 'y', 'z']}self.backtrace(digits, track='')print('==self.res:', self.res)return self.resdigits = "23" sol = Solution() sol.letterCombinations(digits)

3.遞歸實現全排列:

含有三種解法

def swap(a, p, i):a[p], a[i] = a[i], a[p]return a#取第一個數,剩下的做排序,邊界條件是開始索引p==終止索引q def main(a, p, q):res = []def permute(a, p, q):if p == q:res.append(a.copy())print('res:', res)else:for i in range(p, q, 1):swap(a, p, i)permute(a, p+1, q)print('a:', a.copy())swap(a, p, i)#a還原成原順序,比如2開頭的結束了是2 1 3 需要還原成1 2 3 在吧3放在開頭在排序print('==a:', a.copy())permute(a, p, q)print('==res:', res)# # a = [1] # a = [1, 2] a=[1, 2, 3] main(a, 0, len(a))class Solution:def permute(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""def backtrack(first=0):# 所有數都填完了if first == n:res.append(nums.copy())for i in range(first, n):# 動態維護數組nums[first], nums[i] = nums[i], nums[first]# 繼續遞歸填下一個數backtrack(first + 1)# 撤銷操作nums[first], nums[i] = nums[i], nums[first]n = len(nums)res = []backtrack()return resa = [1, 2, 3] sol = Solution() res = sol.permute(a) print('===res:', res) class Solution:def permute(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""n = len(nums)res = []def backtrack(combination, nums):if len(combination) == n:#往前走的數與最早的數長度想等 就是要的結果之一res.append(combination)print('res', res)return# 遞歸的結束一定 要有returnfor i in range(len(nums)):#遞歸回溯print('===nums[i]:', nums[i])backtrack(combination+[nums[i]], nums[:i]+nums[i+1:])backtrack([], nums)return resa = [1, 2] # a = [1, 2, 3] sol = Solution() res = sol.permute(a) print('===res:', res)

4.n皇后問題

#多皇后問題,同一列 同一行 對角都不能出現同一個皇后

#解法思路:采用回溯算法,可對行進行回溯遍歷, 用數組記錄列, 對角索引和,與對角索引差,都不在其中,那么就可以往下走

#終止條件:遍歷到的行是最后一行 且可以放置

class Solution:def could_place(self, row, col):return not (self.cols_index[col] + self.sub_indexs[row - col] + self.add_indexs[row + col])def place_queen(self, row, col):self.quenes.add((row, col))self.cols_index[col] = 1self.sub_indexs[row - col] = 1self.add_indexs[row + col] = 1def remove_queen(self, row, col):self.quenes.remove((row, col))self.cols_index[col] = 0self.sub_indexs[row - col] = 0self.add_indexs[row + col] = 0def add_res(self):for queue in self.quenes:self.res.append(queue)temp = []for row, col in sorted(self.quenes):temp.append('.'*col + 'Q' + '.' * (self.n - col - 1))self.out.append(temp)def backtrace(self, row):for col in range(self.n):if self.could_place(row, col):self.place_queen(row, col)if (row + 1) == self.n:self.add_res()else:self.backtrace(row + 1)self.remove_queen(row, col)def solveNQueens(self, n: int) -> List[List[str]]:self.n = nself.quenes = set()self.cols_index = [0] * nself.sub_indexs = [0]* (2 * n -1)self.add_indexs = [0]* (2 * n -1)self.res = []self.out = []self.backtrace(row = 0)return self.out

?

三.動態規劃

其是一種空間換時間的算法。

1.遞歸與動態規劃解決最大不相鄰數之和

#不相鄰最大數 遞歸解法 def rect_opt(arr,i):if i==0:return arr[i]elif i==1:return max(arr[i-1],arr[i])else:#選自身A=rect_opt(arr,i-2)+arr[i]#不選自身B=rect_opt(arr,i-1)return max(A,B) arr=[4,1,1,9,1] arr=[1,2,3,4,5] res=rect_opt(arr,len(arr)-1) print('res:',res)#不相鄰最大數 DP解法 def dp_opt(arr):opt=[0]*len(arr)opt[0]=arr[0]opt[1]=max(arr[0],arr[1])for i in range(2,len(arr)):opt[i]=max(opt[i-2]+arr[i],opt[i-1])return optarr=[4,1,1,9,1] arr=[1,2,3,4,5] opt=dp_opt(arr) print('opt:',opt) print('res:',opt[-1])

2.動態規劃解決最大公共子串問題

?

# # 動態規劃解決最大公共子串問題 def find_lcsubstr(s1, s2):m = [[0 for i in range(len(s2) + 1)] for j in range(len(s1) + 1)] # 生成0矩陣,為方便后續計算,比字符串長度多了一列print(m)mmax = 0 # 最長匹配的長度p = 0 # 最長匹配對應在si中的最后一位for i in range(len(s1)):for j in range(len(s2)):if s1[i] == s2[j]:m[i + 1][j + 1] = m[i][j] + 1if m[i + 1][j + 1] > mmax:mmax = m[i + 1][j + 1]p = i + 1print(p)return s1[(p - mmax):p], mmax # 返回最長子串及其長度

3.?動態規劃解決最大公共子序列問題

方法1:

import numpy as np def find_lcseque(s1, s2):# 生成字符串長度加1的0矩陣,m用來保存對應位置匹配的結果m = [[0 for x in range(len(s2) + 1)] for y in range(len(s1) + 1)]print(m)# d用來記錄轉移方向d = [[None for x in range(len(s2) + 1)] for y in range(len(s1) + 1)]print(d)for i in range(len(s1)):for j in range(len(s2)):if s1[i] == s2[j]: # 字符匹配成功,則該位置的值為左上方的值加1m[i + 1][j + 1] = m[i][j] + 1d[i + 1][j + 1] = 'ok'elif m[i + 1][j] > m[i][j + 1]: # 左值大于上值,則該位置的值為左值,并標記回溯時的方向m[i + 1][j + 1] = m[i + 1][j]d[i + 1][j + 1] = 'left'else: # 上值大于左值,則該位置的值為上值,并標記方向upm[i + 1][j + 1] = m[i][j + 1]d[i + 1][j + 1] = 'up'print(m)print(d)(i, j) = (len(s1), len(s2))print(np.array(d))s = []while m[i][j]: # m[i][j]不為0 說明是存在公共子序列c = d[i][j]if c == 'ok': # 匹配成功,插入該字符,并向左上角找下一個s.append(s1[i - 1])i -= 1j -= 1if c == 'left': # 根據標記,向左找下一個j -= 1if c == 'up': # 根據標記,向上找下一個i -= 1s.reverse()return ''.join(s)res=find_lcseque('vesista', 'vsiss')print(res)

方法2:

import numpy as npclass Solution(object):def longestCommonSubsequence(self, text1, text2):""":type text1: str:type text2: str:rtype: int"""matrix = [[0 for i in range(len(text2) + 1)] for j in range(len(text1) + 1)]# print('==matrix:', matrix)ok_matrix = [[0 for i in range(len(text2) + 1)] for j in range(len(text1) + 1)]res = ''value = 0record_i_j = []for i in range(len(text1)):for j in range(len(text2)):if text1[i] == text2[j]: # 找到相等的字符matrix[i + 1][j + 1] = matrix[i][j] + 1if matrix[i+1][j+1] > value:#遞增的地方 才記錄value = matrix[i+1][j+1]ok_matrix[i][j] = 1else:matrix[i + 1][j + 1] = max(matrix[i + 1][j], matrix[i][j + 1])print('==matrix:', np.array(matrix))print(np.array(ok_matrix))for i in range(len(ok_matrix)):for j in range(len(ok_matrix[0])):if ok_matrix[i][j] == 1:print('===i,j', i, j)res += text1[i]print('===res:', res)return len(res)sol = Solution() # text1 = "abcde" # text2 = "ace" text1 = "ezupkr" text2 = "ubmrapg" # text1 = "bsbininm" # text2 ="jmjkbkjkv" # text1 = "abcba" # text2 = "abcbcba" # text1 = "oxcpqrsvwf" # text2 = "shmtulqrypy" res = sol.longestCommonSubsequence(text1, text2)

只要求長度:

class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:n = len(text1)m = len(text2)dp = [[0 for _ in range(m + 1)] for _ in range(n + 1)]for i in range(n):for j in range(m):if text1[i] == text2[j]:dp[i + 1][j + 1] = dp[i][j] + 1else:dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1])return dp[-1][-1]

c++實現:

class Solution { public:int longestCommonSubsequence(string text1, string text2) {int n = text1.size();int m = text2.size();vector<vector<int> > dp(n + 1, vector<int>(m + 1, 0));for(int i = 0; i < n; i++){for(int j = 0; j < m; j++){if(text1[i] == text2[j]){dp[i+1][j+1] = dp[i][j] + 1;}else{dp[i+1][j+1] = max(dp[i+1][j], dp[i][j+1]);}}}return dp[n][m];} };

4.求解矩陣最短路徑

原始矩陣:

狀態轉移矩陣:

代碼:

import numpy as np class Solution(object):def minPathSum(self, grid):""":type grid: List[List[int]]:rtype: int"""rows=len(grid)cols=len(grid[0])opt=[[0 for i in range(cols)] for i in range(rows)]# print(np.array(opt))opt[0][0] = grid[0][0]for j in range(1,cols):opt[0][j]=opt[0][j-1]+grid[0][j]# print(np.array(opt))for i in range(1,rows):opt[i][0]=opt[i-1][0]+grid[i][0]# print(np.array(opt))for i in range(1,rows):for j in range(1,cols):opt[i][j]=min(opt[i-1][j]+grid[i][j],opt[i][j-1]+grid[i][j])# print(np.array(opt))return np.array(opt) grid=[[1,3,1],[1,5,1],[4,2,1]] sol=Solution() res=sol.minPathSum(grid) print('res:') print(res) print(res[-1][-1])

結果:

5.子列表元素之和的最大值

解法1.

class Solution(object):def maxSubArray(self, arr):""":type nums: List[int]:rtype: int"""temp = len(arr) * [0]temp[0] = max(arr[0], 0)opt = len(arr)*[0]opt[0]=max(arr[0],0)for i in range(1,len(arr)):temp[i] = max(temp[i - 1]+arr[i], arr[i])opt[i] = max(temp[i],opt[i-1])print('temp:',temp)return optarr=[1, -2, 3, 5, -3, 2] sol=Solution() res=sol.maxSubArray(arr) print('res:',res)

解法2.

class Solution(object):def maxSubArray(self, nums):""":type nums: List[int]:rtype: int"""for i in range(1,len(nums)):nums[i]+=max(nums[i-1],0)return numsa=[1, -2, 3, 5, -3, 2] sol=Solution() res=sol.maxSubArray(a) print('res:',res)

6-1. 01背包問題

(1).復雜解法,空間復雜度為O(N*W)

dp[i][j]:表示第i件物品,重量為j的價值

不選i:? dp[i][j] = dp[i-1][j]

選i: dp[i][j] = dp[i-1][j-w[i]]+v[i]

""" 物品的數量, N = 6 書包能承受的重量, W = 10 每個物品的重量, things_w = [2, 2, 3, 1, 5, 2] 每個物品的價值 things_v = [2, 3, 1, 5, 4, 3] """ N = 6 W = 10 things_w = [2, 2, 3, 1, 5, 2] things_v = [2, 3, 1, 5, 4, 3]# import numpy as np # def bag_complicate(N, W, things_w, things_v):dp = [[0 for j in range(W + 1)] for i in range(N)]print('==np.array(dp):', np.array(dp))for j in range(W + 1):if j >= things_w[0]:dp[0][j] = things_v[0]print('==np.array(dp):', np.array(dp))for i in range(1, N):for j in range(W + 1):dp[i][j] = dp[i - 1][j] # 不選if j >= things_w[i]:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - things_w[i]] + things_v[i])print('==np.array(dp):\n', np.array(dp))return dpdef show(N, W, things_w, value):print('最大價值為:', value[N - 1][W])x = [False for i in range(N)]j = Wfor i in range(N - 1, 0, -1):if value[i][j] > value[i - 1][j]:x[i] = Truej -= things_w[i]print('x', x)# print('背包中所裝物品為:')# for i in range(numbers):print('==np.array(dp):', np.array(dp))# if x[i]:# print('第', i+1, '個,', end='')if __name__ == '__main__':dp = bag_complicate(N, W, things_w, things_v)show(N, W, things_w, dp)

(2). 簡單解法,空間復雜度為O(W)

思路:

不選i:? dp[j] = dp[j]

選i: dp[j] = dp[j-w[i]]+v[i]

要注意的是重量需要逆序遍歷,因為如果采用正序的話 dp[j -w[i]]會被之前的操作更新為新值

N = 6 W = 10 things_w = [2, 2, 3, 1, 5, 2] things_v = [2, 3, 1, 5, 4, 3]def bag_easy(N,W,things_w,things_v):dp = [0 for i in range(W+1)]print('==dp:', dp)for i in range(N):for j in range(W, 0, -1):#記得用一維空間要逆序 防止if j >= things_w[i]:dp[j] = max(dp[j-things_w[i]]+things_v[i], dp[j])print('==dp:', dp)return dpbag_easy(N,W,things_w,things_v)

6-2.完全背包問題

(1)復雜解法

dp[i][j]:表示第i件物品,重量為j的價值

不選i:? dp[i][j] = dp[i-1][j]

選i: dp[i][j] = dp[i][j-w[i]]+v[i]

""" 物品的數量, N = 6 書包能承受的重量, W = 10 每個物品的重量, things_w = [2, 2, 3, 1, 5, 2] 每個物品的價值 things_v = [2, 3, 1, 5, 4, 3] """ N = 6 W = 10 things_w = [2, 2, 3, 1, 5, 2] things_v = [2, 3, 1, 5, 4, 3]# import numpy as np # def bag_complicate(N, W, things_w, things_v):dp = [[0 for j in range(W + 1)] for i in range(N)]print('==np.array(dp):', np.array(dp))for j in range(W + 1):if j >= things_w[0]:dp[0][j] = things_v[0]print('==np.array(dp):', np.array(dp))for i in range(1, N):for j in range(W + 1):dp[i][j] = dp[i - 1][j] # 不選if j >= things_w[i]:dp[i][j] = max(dp[i - 1][j], dp[i][j - things_w[i]] + things_v[i])print('==np.array(dp):\n', np.array(dp))print('最大價值為:', dp[N - 1][W])return dpif __name__ == '__main__':dp = bag_complicate(N, W, things_w, things_v)

(2)優化解法

def bag_easy(N,W,things_w,things_v):dp = [i for i in range(W+1)]print('==np.array(dp):', np.array(dp))for i in range(N):for j in range(W+1):if j >= things_w[i]:dp[j] = max(dp[j], dp[j-things_w[i]]+things_v[i])else:dp[j] = dp[j]print('==np.array(dp):', np.array(dp)) if __name__ == '__main__':bag_easy(N, W, things_w, things_v)

7.零錢兌換

https://leetcode-cn.com/problems/coin-change/submissions/

給定不同面額的硬幣 coins 和一個總金額 amount。編寫一個函數來計算可以湊成總金額所需的最少的硬幣個數。如果沒有任何一種硬幣組合能組成總金額,返回?-1。假設我們取面額為 1 的硬幣,那么接下來需要湊齊的總金額變為?11 - 1 = 10,即?f(11) = f(10) + 1,這里的?+1?就是我們取出的面額為 1 的硬幣。

同理,如果取面額為 2 或面額為 5 的硬幣可以得到:

  • f(11) = f(9) + 1
  • f(11) = f(6) + 1

所以:

f(11) = min(f(10), f(9), f(6)) + 1

class Solution:def coinChange(self, coins,amount):f = [float("inf")] * (amount + 1)f[0] = 0for i in range(1, amount + 1):for coin in coins:if i - coin >= 0:f[i] = min(f[i], f[i - coin]+1)print(f)return f[-1] if f[-1] != float("inf") else -1coins = [1, 2, 5] amount = 11 sol=Solution() res=sol.coinChange(coins,amount) print('res:') print(res)

8.乘積最大子序列

乘法與加法最大差別在于,當前元素的符號具有全局性的作用。如果當前元素為負,那么連乘到上個元素的最大乘積,再乘以當前元素,就變成負數,甚至可能成為最小乘積。同樣,連乘到上個元素的最小乘積如為負,再乘以當前元素,就變成正數,甚至可能成為最大乘積,所以用兩個列表存儲當前最大最小值。

class Solution(object):def maxProduct(self, nums):""":type nums: List[int]:rtype: int"""if len(nums)<=1:return Noneopt_min=[0]*len(nums)opt_max = [0] * len(nums)opt_min[0]=nums[0]opt_max[0] = nums[0]for i in range(1,len(nums)):opt_min[i] = min(min(opt_min[i-1]*nums[i],opt_max[i-1]*nums[i]),nums[i])opt_max[i] = max(max(opt_min[i-1]*nums[i],opt_max[i-1]*nums[i]),nums[i])print('opt_min',opt_min)print('opt_max',opt_max)return max(opt_max)nums = [2, 3, -4,4] # nums =[-2,0,-1] # nums=[0,2] # amount = 11 sol=Solution() res=sol.maxProduct(nums) print('res:') print(res)

9.三角形最小路徑和

https://leetcode-cn.com/problems/triangle/submissions/

class Solution(object):def minimumTotal(self, triangle):""":type triangle: List[List[int]]:rtype: int"""# res=[]for i in range(1,len(triangle)):for j in range(len(triangle[i])):#邊界條件if j == 0:triangle[i][j]=triangle[i-1][j]+triangle[i][j]# 邊界條件elif j == i:triangle[i][j] = triangle[i - 1][j-1] + triangle[i][j]else:triangle[i][j] = min(triangle[i - 1][j - 1],triangle[i-1][j]) + triangle[i][j]return min(triangle[-1])triangle =[[2],[3,4],[6,5,7],[4,1,8,3] ] # nums =[-2,0,-1] # nums=[0,2] # amount = 11 sol=Solution() res=sol.minimumTotal(triangle) print('res:') print(res)

10.收益最大--簡易

https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock/submissions/

前i天的最大收益 = max{前i-1天的最大收益,第i天的價格-前i-1天中的最小價格}

class Solution(object):def maxProfit(self, prices):""":type prices: List[int]:rtype: int"""if len(prices)<=1:return Noneopt=[0]*len(prices)min_p=9999for i in range(len(prices)):#記錄第i天之前的最小價min_p = min(min_p, prices[i])opt[i] = max(opt[i-1],prices[i]-min_p)#min(prices[:i]))print(opt)return opt[-1]prices =[1,2] # nums =[-2,0,-1] # nums=[0,2] # amount = 11 sol=Solution() res=sol.maxProfit(prices) print('res:') print(res)

10.收益最大--中級

https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/

# sell[i]表示截至第i天,最后一個操作是賣時的最大收益; # buy[i]表示截至第i天,最后一個操作是買時的最大收益; # cool[i]表示截至第i天,最后一個操作是冷凍期時的最大收益; class Solution(object):def maxProfit(self, prices):""":type prices: List[int]:rtype: int"""if len(prices) == 0:return 0sell = [0]*len(prices)buy = [0] * len(prices)cool = [0] * len(prices)buy[0]-=prices[0]print(buy)for i in range(1,len(prices)):# 第i天賣 第i天不賣sell[i]=max(sell[i-1],buy[i-1]+prices[i])# 第i天不買 第i天買buy[i] = max(buy[i-1],cool[i-1]-prices[i])# 第i天冷 第i天不冷cool[i] = max(sell[i-1],cool[i - 1],buy[i-1])print(buy)print(cool)print(sell)return sell[-1]prices=[1,2,3,0,2] sol = Solution() res = sol.maxProfit(prices) print('res:') print(res)

11.矩陣走法最多路徑

https://leetcode-cn.com/problems/unique-paths/

一個機器人位于一個 m x n 網格的左上角 (起始點在下圖中標記為“Start” )。

機器人每次只能向下或者向右移動一步。機器人試圖達到網格的右下角(在下圖中標記為“Finish”)。

問總共有多少條不同的路徑?

class Solution(object):def uniquePaths(self, m, n):""":type m: int:type n: int:rtype: int"""opt=[[0 for i in range(n)] for j in range(m)]print(opt)for i in range(m):for j in range(n):if i==0 or j==0:opt[i][j]=1else:opt[i][j]=opt[i-1][j]+opt[i][j-1]print(opt)print(opt[-1][-1])return opt[-1][-1]m = 3 n = 2 sol=Solution() sol.uniquePaths(m,n)

12.一個機器人位于一個 m x n 網格的左上角 (起始點在下圖中標記為“Start” )。

機器人每次只能向下或者向右移動一步。機器人試圖達到網格的右下角(在下圖中標記為“Finish”)。

現在考慮網格中有障礙物。那么從左上角到右下角將會有多少條不同的路徑

https://leetcode-cn.com/problems/unique-paths-ii/

class Solution(object):def uniquePathsWithObstacles(self, obstacleGrid):""":type obstacleGrid: List[List[int]]:rtype: int"""opt=[[0 for i in range(len(obstacleGrid[0]))] for j in range(len(obstacleGrid))]# print(opt)for i in range(len(obstacleGrid)):for j in range(len(obstacleGrid[0])):#邊界條件if obstacleGrid[i][j]==1:opt[i][j]=0else:if i==0 and j==0:opt[i][j]=1elif i==0:opt[i][j]=opt[i][j-1]elif j==0:opt[i][j] = opt[i-1][j]else:opt[i][j]=opt[i-1][j]+opt[i][j-1]# print(opt)return opt[-1][-1]

13.輸入: s = "leetcode", wordDict = ["leet", "code"] 輸出: true

https://leetcode-cn.com/problems/word-break/

class Solution(object):def wordBreak(self, s, wordDict):""":type s: str:type wordDict: List[str]:rtype: bool"""word_set = {word for word in wordDict}# print(word_set)dp = [False for _ in range(len(s))]dp[0] = s[0] in word_set#第一層循環最外層for i in range(1, len(s)):if s[:i+1] in wordDict:dp[i] = True#內層循環for j in range(i):if dp[j] and s[j+1:i+1] in wordDict:dp[i] = Truebreakprint(dp)return dp[-1]s = "leetcode" wordDict = ["leet", "code"] sol=Solution() res=sol.wordBreak(s,wordDict)

14,最大正方形面積

在一個由 0 和 1 組成的二維矩陣內,找到只包含 1 的最大正方形,并返回其面積。

https://leetcode-cn.com/problems/maximal-square/

class Solution(object):def maximalSquare(self, matrix):""":type matrix: List[List[str]]:rtype: int"""if not matrix:return 0rows=len(matrix)columns=len(matrix[0])dp=[[0]*columns for i in range(rows)]#邊界條件dp[0]=list(map(int,matrix[0]))for i in range(rows):dp[i][0] = int(matrix[i][0])for i in range(1,rows):for j in range(1,columns):#遞歸條件if matrix[i][j]=="1":dp[i][j]=min(dp[i-1][j],dp[i-1][j-1],dp[i][j-1])+1res=0for i in range(rows):for j in range(columns):res = max(res,dp[i][j]**2)print('dp:',dp)print(res)return res# matrix=[[1, 0, 1, 0, 0], # [1, 0, 1, 1, 1], # [1, 1, 1, 1, 1], # [1, 0, 0, 1, 0]] matrix=[["1"]] sol=Solution() res=sol.maximalSquare(matrix) print('res:',res)

15.將列表中相鄰的數聚類在一起(動態規劃)

1直接相鄰就聚,帶來的問題是如果值依次增加,會不準(動態規劃)

a=[1,2,3,4,56,34,46,100,110,123] a=sorted(a) print('a:',a) opt=[0]*len(a) for i in range(1,len(a)):if a[i]-a[i-1]<20:opt[i]=1 opt.append(0) print('opt:',opt) index=[j for j in range(len(opt)) if opt[j]==0] print('index:',index) for k in range(len(index)-1):print(a[index[k]:index[k+1]])

2.優化版,雙指針

a = [1, 2, 3, 4, 56, 34, 46, 100, 110, 123] a = sorted(a) print('a:', a) res = [] left, right = 0, 0 while right <len(a):right= left+1while right < len(a) and a[right]-a[left]<20:right+=1res.append([left, right-1])left = rightprint('==res:', res)for i in res:print('==a[i[0]:i[1]]:', a[i[0]:i[1] + 1])

16.打家劫舍簡單版?房屋一排

https://leetcode-cn.com/problems/house-robber/

class Solution(object):def rob(self, nums):""":type nums: List[int]:rtype: int"""if len(nums)==0:return 0if len(nums)<=2:return max(nums)opt = [0] * len(nums)opt[0] = nums[0]opt[1] = max(nums[:2])#注意邊界條件 從2開始 所以要對 0 1 賦值for i in range(2,len(nums)):opt[i]=max(opt[i-2]+nums[i],opt[i-1])print(opt)return opt[-1] nums=[1,2,3,1] sol = Solution() res = sol.rob(nums) print('res:') print(res)

17.打家劫舍中等版 房屋圍成圈 所以分為不搶第一家和不搶最后一家兩種情況

https://leetcode-cn.com/problems/house-robber-ii/

class Solution(object):def rob(self, nums):""":type nums: List[int]:rtype: int"""if len(nums)==0:return 0if len(nums)<=2:return max(nums)opt1 = [0] * len(nums)opt2 = [0] * len(nums)#不搶第一家opt1[0] = 0opt1[1] = nums[1]#不搶最后一家opt2[0] = nums[0]opt2[1] = max(nums[:2])for i in range(2,len(nums)):opt1[i]=max(opt1[i-2]+nums[i], opt1[i-1])print(opt1)for i in range(2, len(nums)-1):opt2[i] = max(opt2[i - 2] + nums[i], opt2[i - 1])print(opt2)return max(opt1[-1],opt2[-2]) nums=[1,2,3,1] sol = Solution() res = sol.rob(nums) print('res:') print(res)

18.最長上升子序列

給定一個無序的整數數組,找到其中最長上升子序列的長度。

利用opt列表來存儲在第i個元素之前小于i的最長長度。

class Solution(object):def lengthOfLIS(self, nums):""":type nums: List[int]:rtype: int"""if nums==[]:return 0opt=[0]*len(nums)opt[0]=1for i in range(len(nums)):max_value = 0for j in range(i):#在<i這段內 找出小于nums[i]的數字if nums[i]>nums[j]:max_value=max(max_value,opt[j])opt[i]=max_value+1# print(opt)# print(max_value)return max(opt)

19.編輯距離計算字符之間相似度

編輯距離,又稱Levenshtein距離(萊文斯坦距離也叫做Edit Distance),是指兩個字串之間,由一個轉成另一個所需的最少編輯操作次數,如果它們的距離越大,說明它們越是不同。許可的編輯操作包括將一個字符替換成另一個字符插入一個字符刪除一個字符

mat[i+1,j]+1表示增加操作
d[i,j+1]+1 表示刪除操作
d[i,j]+temp表示替換操作,其中temp取0或1

import os import numpy as np def edit_distance(S1,S2):#S1列 S2行mat = [[0] *(len(S1)+1) for i in range(len(S2)+1)]# print('mat:', mat)for i in range(len(S2)):mat[i+1][0] = mat[i][0]+1# print('mat:', mat)for i in range(len(S1)):mat[0][i+1] = mat[0][i]+1print('mat:\n', np.array(mat))#相等就為0 不想等加1for i in range(len(S2)):for j in range(len(S1)):if S2[i] == S1[j]:print('S2[i]:', S2[i])mat[i + 1][j + 1] = min(mat[i][j] + 0, mat[i + 1][j]+1, mat[i][j + 1]+1)else:mat[i + 1][j + 1] = min(mat[i][j] + 1, mat[i + 1][j]+1, mat[i][j + 1]+1)print('mat:\n', np.array(mat))dis = mat[-1][-1]print('dis:', dis)return dis # S1 = 'iva1' # S2 = 'iva'S2 = '者記聞新' S1 = '浪(第' dis = edit_distance(S1, S2) similarity = 1. - dis/max(len(S1), len(S2)) print('similarity:', similarity)

總結

以上是生活随笔為你收集整理的贪心算法+回溯算法+动态规划的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。