日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

二隐层的神经网络实现MNIST数据集分类

發布時間:2024/7/23 编程问答 33 豆豆
生活随笔 收集整理的這篇文章主要介紹了 二隐层的神经网络实现MNIST数据集分类 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?二隱層的神經網絡實現MNIST數據集分類

傳統的人工神經網絡包含三部分,輸入層隱藏層輸出層。對于一個神經網絡模型的確定需要考慮以下幾個方面:

  • 隱藏層的層數以及各層的神經元數量
  • 各層激活函數的選擇
  • 輸入層輸入數據的shape
  • 輸出層神經元的數量

以上神經網絡的骨架確定之后,則相應的權重和偏置所對應的shape也隨之確定,即網絡結構的確定。

下面的代碼是通過二隱層的神經網絡實現MNIST手寫數字的分類,下圖為該神經網絡的網絡結構

?

# 用兩隱層神經網絡實現手寫數字(mnist)分類 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import numpy as np import matplotlib.pyplot as pltmnist = input_data.read_data_sets('D:\MNIST_data', one_hot=True)n_hidden_1 = 256 n_hidden_2 = 128 n_input = 784 n_classes = 10# INPUT AND OUTPUT x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_classes])# NETWORK PARAMETERS stddev = 0.1 weights = {"w1": tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=stddev)),"w2": tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], stddev=stddev)),"out": tf.Variable(tf.random_normal([n_hidden_2, n_classes], stddev=stddev)) } biases = {"b1": tf.Variable(tf.zeros([n_hidden_1], tf.float32)),"b2": tf.Variable(tf.zeros([n_hidden_2], tf.float32)),"out": tf.Variable(tf.zeros([n_classes], tf.float32)) }def network(inputs, weights, biases):layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(inputs, weights['w1']), biases['b1']))layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['w2']), biases['b2']))pre = tf.matmul(layer_2, weights['out']) + biases['out']return prepred = network(x, weights, biases)cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=pred)) train = tf.train.GradientDescentOptimizer(0.001).minimize(cost) acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(acc, tf.float32))init = tf.global_variables_initializer()train_step = 500 batch_size = 100 display_step = 10with tf.Session() as sess:sess.run(init)for k in range(train_step):loss = 0num_batch = int(mnist.train.num_examples/batch_size)for L in range(num_batch):batch_xs, batch_ys = mnist.train.next_batch(100)sess.run(train, feed_dict={x: batch_xs, y: batch_ys})_loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})loss += _lossif k % display_step == 0:_accuracy = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})print('loss:%2f' % loss, ' accuracy:%2f' % _accuracy)

訓練500次之后,測試精度為:

loss:167.206619 accuracy:0.916900

?

總結

以上是生活随笔為你收集整理的二隐层的神经网络实现MNIST数据集分类的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。