seaborn绘图入门1(lineplot+barplot+heatmap+scatterplot)
生活随笔
收集整理的這篇文章主要介紹了
seaborn绘图入门1(lineplot+barplot+heatmap+scatterplot)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
文章目錄
- 1. lineplot 線圖
- 2. barplot 、heatmap 條形圖、熱圖
- 2.1 barplot,條形圖
- 2.2 heatmap,熱圖
- 3. scatterplot、regplot 散點圖
- 3.1 scatterplot,普通散點圖
- 3.2 regplot,帶回歸線
- 3.3 scatterplot(x=,y=,hue=) ,hue帶第三個變量區分
- 3.4 lmplot,3變量+2回歸線
- 3.5 swarmplot,分類散點圖
learn from https://www.kaggle.com/learn/data-visualization
下一篇:seaborn繪圖入門2(distplot+kdeplot+jointplot+set_style)
1. lineplot 線圖
# -*- coding:utf-8 -*- # @Python Version: 3.7 # @Time: 2020/5/14 0:10 # @Author: Michael Ming # @Website: https://michael.blog.csdn.net/ # @File: seabornExercise.py # @Reference: import pandas as pdpd.plotting.register_matplotlib_converters() import matplotlib.pyplot as plt import seaborn as snsfilepath = "spotify.csv" data = pd.read_csv(filepath, index_col='Date', parse_dates=True)print(data.head()) # 數據頭幾行 print(data.tail()) # 尾部幾行 print(list(data.columns)) # 列名稱 print(data.index) # 行index數據plt.figure(figsize=(12, 6)) sns.lineplot(data=data) # 單個數據可以加 label="label_test" plt.title("title") plt.xlabel("Data_test") plt.show()sns.lineplot(data=data['Shape of You'],label='Shape of You') plt.show() Shape of You Despacito ... HUMBLE. Unforgettable Date ... 2017-01-06 12287078 NaN ... NaN NaN 2017-01-07 13190270 NaN ... NaN NaN 2017-01-08 13099919 NaN ... NaN NaN 2017-01-09 14506351 NaN ... NaN NaN 2017-01-10 14275628 NaN ... NaN NaN [5 rows x 5 columns]Shape of You Despacito ... HUMBLE. Unforgettable Date ... 2018-01-05 4492978 3450315.0 ... 2685857.0 2869783.0 2018-01-06 4416476 3394284.0 ... 2559044.0 2743748.0 2018-01-07 4009104 3020789.0 ... 2350985.0 2441045.0 2018-01-08 4135505 2755266.0 ... 2523265.0 2622693.0 2018-01-09 4168506 2791601.0 ... 2727678.0 2627334.0 [5 rows x 5 columns]['Shape of You', 'Despacito', 'Something Just Like This', 'HUMBLE.', 'Unforgettable']DatetimeIndex(['2017-01-06', '2017-01-07', '2017-01-08', '2017-01-09','2017-01-10', '2017-01-11', '2017-01-12', '2017-01-13','2017-01-14', '2017-01-15',...'2017-12-31', '2018-01-01', '2018-01-02', '2018-01-03','2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07','2018-01-08', '2018-01-09'],dtype='datetime64[ns]', name='Date', length=366, freq=None)
2. barplot 、heatmap 條形圖、熱圖
2.1 barplot,條形圖
# 柱狀圖、熱圖 filepath = "flight_delays.csv" flight_data = pd.read_csv(filepath, index_col="Month") print(flight_data)plt.figure(figsize=(10, 6)) plt.rcParams['font.sans-serif'] = 'SimHei' # 消除中文亂碼 plt.title("Spirit Airlines Flights月度晚點") sns.barplot(x=flight_data.index, y=flight_data['NK']) # x,y可以互換 # 錯誤用法 x=flight_data['Month'] plt.ylabel("到達晚點(分鐘)") plt.show()2.2 heatmap,熱圖
# 熱圖 plt.figure(figsize=(14,7)) plt.title("所有航班月度平均到達晚點(分鐘)") sns.heatmap(data=flight_data,annot=True) # annot = True 每個單元格的值都顯示在圖表上 # (不選擇此項將刪除每個單元格中的數字!) plt.xlabel("航班") plt.show()3. scatterplot、regplot 散點圖
3.1 scatterplot,普通散點圖
# 散點圖 filepath = "insurance.csv" insurance_data = pd.read_csv(filepath) sns.scatterplot(x=insurance_data['bmi'], y=insurance_data['charges']) plt.show()3.2 regplot,帶回歸線
# 帶回歸擬合線plot sns.regplot(x=insurance_data['bmi'], y=insurance_data['charges'])3.3 scatterplot(x=,y=,hue=) ,hue帶第三個變量區分
# 查看區分,是否吸煙 hue sns.scatterplot(x=insurance_data['bmi'], y=insurance_data['charges'],hue=insurance_data['smoker'])3.4 lmplot,3變量+2回歸線
# 帶兩條回歸線,展示3個變量的關系 sns.lmplot(x='bmi',y='charges',hue='smoker',data=insurance_data)3.5 swarmplot,分類散點圖
# 分類散點圖,不吸煙的花錢較少 sns.swarmplot(x=insurance_data['smoker'],y=insurance_data['charges'])下一篇:seaborn繪圖入門2(distplot+kdeplot+jointplot+set_style)
總結
以上是生活随笔為你收集整理的seaborn绘图入门1(lineplot+barplot+heatmap+scatterplot)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: LeetCode 1196. 最多可以买
- 下一篇: 程序员面试金典 - 面试题 08.14.