日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > Caffe >内容正文

Caffe

Caffe 层

發布時間:2024/6/30 Caffe 185 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Caffe 层 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

卷積神經網絡(Convolutional Neural Network, CNN)是一種前饋神經網絡,它的人工神經元可以響應一部分覆蓋范圍內的周圍單元,[1]對于大型圖像處理有出色表現。

Deep Neural Network(DNN)模型是基本的深度學習框架

遞歸神經網絡(RNN)是兩種人工神經網絡的總稱。一種是時間遞歸神經網絡(recurrent neural network),另一種是結構遞歸神經網絡(recursive neural network)。時間遞歸神經網絡的神經元間連接構成矩陣,而結構遞歸神經網絡利用相似的神經網絡結構遞歸構造更為復雜的深度網絡。RNN一般指代時間遞歸神經網絡。單純遞歸神經網絡因為無法處理隨著遞歸,權重指數級爆炸或消失的問題(Vanishing gradient problem),難以捕捉長期時間關聯;而結合不同的LSTM可以很好解決這個問題。

# bottom = last top name: "LeNet" # 數據層 layer {name: "mnist"type: "Data"top: "data"top: "label"include {phase: TRAIN}transform_param {scale: 0.00390625}data_param {source: "mnist_train_lmdb"batch_size: 64backend: LMDB} } # 數據層 layer {name: "mnist"type: "Data"top: "data"top: "label"include {phase: TEST}transform_param {scale: 0.00390625}data_param {source: "mnist_test_lmdb"batch_size: 100backend: LMDB} } # 卷積層 layer {name: "conv1"type: "Convolution"bottom: "data"top: "conv1"param {lr_mult: 1}param {lr_mult: 2}convolution_param {num_output: 20kernel_size: 5stride: 1weight_filler {type: "xavier"}bias_filler {type: "constant"}} } # 池化層 layer {name: "pool1"type: "Pooling"bottom: "conv1"top: "pool1"pooling_param {pool: MAXkernel_size: 2stride: 2} } # 卷積層 layer {name: "conv2"type: "Convolution"bottom: "pool1"top: "conv2"param {lr_mult: 1}param {lr_mult: 2}convolution_param {num_output: 50kernel_size: 5stride: 1weight_filler {type: "xavier"}bias_filler {type: "constant"}} } # 池化層 layer {name: "pool2"type: "Pooling"bottom: "conv2"top: "pool2"pooling_param {pool: MAXkernel_size: 2stride: 2} } # 全連接層 layer {name: "ip1"type: "InnerProduct"bottom: "pool2"top: "ip1"param {lr_mult: 1}param {lr_mult: 2}inner_product_param {num_output: 500weight_filler {type: "xavier"}bias_filler {type: "constant"}} } # ReLU層 layer {name: "relu1"type: "ReLU"bottom: "ip1"top: "ip1" } # 全連接層 layer {name: "ip2"type: "InnerProduct"bottom: "ip1"top: "ip2"param {lr_mult: 1}param {lr_mult: 2}inner_product_param {num_output: 10weight_filler {type: "xavier"}bias_filler {type: "constant"}} } # 損失層/預測精度 layer {name: "accuracy"type: "Accuracy"bottom: "ip2"bottom: "label"top: "accuracy"include {phase: TEST} } # 損失層 layer {name: "loss"type: "SoftmaxWithLoss"bottom: "ip2"bottom: "label"top: "loss" }
數據層 Data Layers
  • Image Data - read raw images.
  • Database - read data from LEVELDB or LMDB.
  • HDF5 Input - read HDF5 data, allows data of arbitrary dimensions.
  • HDF5 Output - write data as HDF5.
  • Input - typically used for networks that are being deployed.
  • Window Data - read window data file.
  • Memory Data - read data directly from memory.
  • Dummy Data - for static data and debugging.
視覺層 Vision Layers
  • Convolution Layer - convolves the input image with a set of learnable filters, each producing one feature map in the output image.
  • Pooling Layer - max, average, or stochastic pooling.
  • Spatial Pyramid Pooling (SPP)
  • Crop - perform cropping transformation.
  • Deconvolution Layer - transposed convolution.
  • Im2Col - relic helper layer that is not used much anymore.
經常層 Recurrent Layers
  • Recurrent
  • RNN
  • Long-Short Term Memory (LSTM)
普通層 Common Layers
  • Inner Product - fully connected layer.
  • Dropout
  • Embed - for learning embeddings of one-hot encoded vector (takes index as input).
歸一化層 Normalization Layers
  • Local Response Normalization (LRN) - performs a kind of “lateral inhibition” by normalizing over local input regions.
  • Mean Variance Normalization (MVN) - performs contrast normalization / instance normalization.
  • Batch Normalization - performs normalization over mini-batches.
激活/神經元層 Activation / Neuron Layers
  • ReLU / Rectified-Linear and Leaky-ReLU - ReLU and Leaky-ReLU rectification.
  • PReLU - parametric ReLU.
  • ELU - exponential linear rectification.
  • Sigmoid
  • TanH
  • Absolute Value
  • Power - f(x) = (shift + scale * x) ^ power.
  • Exp - f(x) = base ^ (shift + scale * x).
  • Log - f(x) = log(x).
  • BNLL - f(x) = log(1 + exp(x)).
  • Threshold - performs step function at user defined threshold.
  • Bias - adds a bias to a blob that can either be learned or fixed.
  • Scale - scales a blob by an amount that can either be learned or fixed.
實用層 Utility Layers
  • Flatten
    *Reshape
  • Batch Reindex
  • Split
  • Concat
  • Slicing
  • Eltwise - element-wise operations such as product or sum between two blobs.
  • Filter / Mask - mask or select output using last blob.
  • Parameter - enable parameters to be shared between layers.
  • Reduction - reduce input blob to scalar blob using operations such as sum or mean.
  • Silence - prevent top-level blobs from being printed during training.
  • ArgMax
  • Softmax
  • Python - allows custom Python layers.
損失層 Loss Layers
  • Multinomial Logistic Loss
  • Infogain Loss - a generalization of MultinomialLogisticLossLayer.
  • Softmax with Loss - computes the multinomial logistic loss of the softmax of its inputs. It’s conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient.
  • Sum-of-Squares / Euclidean - computes the sum of squares of differences of its two inputs, 12N∑Ni=1∥x1i?x2i∥2212N∑i=1N‖xi1?xi2‖22
  • Hinge / Margin - The hinge loss layer computes a one-vs-all hinge (L1) or squared hinge loss (L2).
  • Sigmoid Cross-Entropy Loss - computes the cross-entropy (logistic) loss, often used for predicting targets interpreted as probabilities.
  • Accuracy / Top-k layer - scores the output as an accuracy with respect to target – it is not actually a loss and has no backward step.
  • Contrastive Loss

轉載于:https://www.cnblogs.com/cheungxiongwei/articles/7746386.html

總結

以上是生活随笔為你收集整理的Caffe 层的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 伦理片中文字幕 | 亚洲综合av一区 | 制服丝袜中文字幕在线 | 中文在线观看av | av色网站 | 涩涩视频在线免费看 | 久久99国产精品成人 | 国产成人免费在线视频 | 亚州国产精品视频 | 男女做爰猛烈吃奶啪啪喷水网站 | 91网页入口 | 国产探花视频在线观看 | 污污网站免费 | 久草五月天 | 久久久6 | 外国黄色网| 无码av免费毛片一区二区 | 成人av在线看 | 国产a∨精品一区二区三区仙踪林 | 国产亚洲av在线 | 亚洲久久影院 | 农村寡妇一区二区三区 | 用力挺进新婚白嫩少妇 | 国产熟妇搡bbbb搡bbbb搡 | 影音先锋中文字幕在线 | 91在线视频在线观看 | 国产污污 | 先锋资源一区 | 日韩a级片在线观看 | 国产成人在线免费观看视频 | 聚色屋 | 午夜影院入口 | 亚洲美女毛片 | 美女又爽又黄免费视频 | 色优久久 | 小sao货大ji巴cao死你 | 久操精品 | 亚洲性少妇 | 日本午夜激情 | 另类小说五月天 | 国产成人精品一区二区在线小狼 | 国产色综合网 | 亚洲免费视频一区 | av色图在线| 你懂的在线网站 | 美国美女群体交乱 | 日韩黄色片网站 | 涩涩成人 | 超碰2022| 色就是色网站 | 丰满双乳秘书被老板狂揉捏 | 欧美日韩中文字幕一区二区 | 国产高清一区二区 | 国产一区,二区 | 亚洲一区二区免费看 | 色欲AV无码精品一区二区久久 | 久久人爽 | 日本a级一区 | 亚洲欧洲免费无码 | 免费毛片网站在线观看 | aaa一区二区三区 | 九一精品一区 | 精品国产乱码一区二 | 亚洲午夜福利一区二区三区 | 日韩一区二区三区av | 爱爱三级视频 | 亚洲中国色老太 | 尤物在线免费观看 | 九九视频免费观看 | 日韩伦理一区二区 | 日韩欧美一区二区视频 | 小镇姑娘1979版| 黄色wwwww | 天堂а√在线中文在线新版 | 亚洲国产精品999 | 少妇被又大又粗又爽毛片久久黑人 | 在线视频国产一区 | kendra lust free xxx| 蜜桃又黄又粗又爽av免 | 黄色三级网站在线观看 | 91久久国产综合久久91精品网站 | 欧美老女人bb | 天天爽夜夜爽一区二区三区 | 色中色综合网 | 天天干天天插天天射 | 三男一女吃奶添下面 | 国产一区二区三区高清视频 | 日日鲁鲁鲁夜夜爽爽狠狠视频97 | 高清欧美性猛交xxxx | 中文区中文字幕免费看 | 成年人免费av | 手机成人av在线 | 成年人免费在线观看视频网站 | 国产普通话bbwbbwbbw | 99精品人妻无码专区在线视频区 | 96久久| 日干夜干天天干 | 久久高清无码视频 | 日韩一区免费观看 |