PyTorch学习笔记(四)Logistic回归
生活随笔
收集整理的這篇文章主要介紹了
PyTorch学习笔记(四)Logistic回归
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
# 導入相關庫函數(shù)
import numpy as np
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
# 超參數(shù)
input_size =28*28
num_classes =10
num_epochs = 10
batch_size = 100
learning_rate = 0.001
# MNIST數(shù)據(jù)集
train_dataset = torchvision.datasets.MNIST(root='../../data',train=True,transform=transforms.ToTensor(),download=True)
test_dataset = torchvision.datasets.MNIST(root='../../data',train=False,transform=transforms.ToTensor())
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=batch_size,shuffle=False)
# Logistic 回歸模型
model = nn.Linear(input_size,num_classes)# 損失函數(shù)和優(yōu)化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)
# 訓練模型
total_step = len(train_loader)
for epoch in range(num_epochs):for i,(images,labels) in enumerate(train_loader):# 轉換圖像格式images = images.reshape(-1,input_size)# 前向傳播outputs = model(images)loss = criterion(outputs,labels)# 后向傳播并優(yōu)化optimizer.zero_grad()loss.backward()optimizer.step()if (i+1) % 100 == 0:print('Epoch [{}/{}], Step [{}/{}], Loss:{:.4f}'.format(epoch+1,num_epochs,i+1,total_step,loss.item()))
Epoch [1/10], Step [100/600], Loss:2.1877
Epoch [1/10], Step [200/600], Loss:2.0952
Epoch [1/10], Step [300/600], Loss:2.0192
Epoch [1/10], Step [400/600], Loss:1.8990
Epoch [1/10], Step [500/600], Loss:1.8696
Epoch [1/10], Step [600/600], Loss:1.7758
Epoch [2/10], Step [100/600], Loss:1.6857
Epoch [2/10], Step [200/600], Loss:1.6319
Epoch [2/10], Step [300/600], Loss:1.6608
Epoch [2/10], Step [400/600], Loss:1.5398
Epoch [2/10], Step [500/600], Loss:1.4866
Epoch [2/10], Step [600/600], Loss:1.5251
Epoch [3/10], Step [100/600], Loss:1.3724
Epoch [3/10], Step [200/600], Loss:1.3550
Epoch [3/10], Step [300/600], Loss:1.4124
Epoch [3/10], Step [400/600], Loss:1.3413
Epoch [3/10], Step [500/600], Loss:1.1988
Epoch [3/10], Step [600/600], Loss:1.2809
Epoch [4/10], Step [100/600], Loss:1.2419
Epoch [4/10], Step [200/600], Loss:1.1801
Epoch [4/10], Step [300/600], Loss:1.2190
Epoch [4/10], Step [400/600], Loss:1.1891
Epoch [4/10], Step [500/600], Loss:1.1165
Epoch [4/10], Step [600/600], Loss:1.1057
Epoch [5/10], Step [100/600], Loss:0.9912
Epoch [5/10], Step [200/600], Loss:1.1478
Epoch [5/10], Step [300/600], Loss:0.9327
Epoch [5/10], Step [400/600], Loss:0.9662
Epoch [5/10], Step [500/600], Loss:0.8517
Epoch [5/10], Step [600/600], Loss:0.9587
Epoch [6/10], Step [100/600], Loss:0.9835
Epoch [6/10], Step [200/600], Loss:0.9946
Epoch [6/10], Step [300/600], Loss:0.8951
Epoch [6/10], Step [400/600], Loss:0.9013
Epoch [6/10], Step [500/600], Loss:0.9931
Epoch [6/10], Step [600/600], Loss:0.8686
Epoch [7/10], Step [100/600], Loss:0.9099
Epoch [7/10], Step [200/600], Loss:0.8394
Epoch [7/10], Step [300/600], Loss:0.9348
Epoch [7/10], Step [400/600], Loss:0.7706
Epoch [7/10], Step [500/600], Loss:1.0090
Epoch [7/10], Step [600/600], Loss:0.8198
Epoch [8/10], Step [100/600], Loss:0.8123
Epoch [8/10], Step [200/600], Loss:0.8300
Epoch [8/10], Step [300/600], Loss:0.8192
Epoch [8/10], Step [400/600], Loss:0.7725
Epoch [8/10], Step [500/600], Loss:0.8281
Epoch [8/10], Step [600/600], Loss:0.8399
Epoch [9/10], Step [100/600], Loss:0.8856
Epoch [9/10], Step [200/600], Loss:0.7889
Epoch [9/10], Step [300/600], Loss:0.7205
Epoch [9/10], Step [400/600], Loss:0.7489
Epoch [9/10], Step [500/600], Loss:0.8840
Epoch [9/10], Step [600/600], Loss:0.6865
Epoch [10/10], Step [100/600], Loss:0.7590
Epoch [10/10], Step [200/600], Loss:0.7337
Epoch [10/10], Step [300/600], Loss:0.7751
Epoch [10/10], Step [400/600], Loss:0.6656
Epoch [10/10], Step [500/600], Loss:0.6606
Epoch [10/10], Step [600/600], Loss:0.7351
# 測試模型
# 測試階段,不需要計算梯度
with torch.no_grad():correct = 0total = 0for images,labels in test_loader:images = images.reshape(-1,input_size)outputs = model(images)_,predicted = torch.max(outputs.data,1)total += labels.size(0)correct += (predicted==labels).sum()print('Accuracy of the model on the 10000 test images:{} %'.format(100*correct/total))
Accuracy of the model on the 10000 test images:85.55999755859375 %
# 保存模型
torch.save(model.state_dict(),'model.ckpt')
總結
以上是生活随笔為你收集整理的PyTorch学习笔记(四)Logistic回归的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: insert into select 插
- 下一篇: sheetjs在使用中日期被自动转换问题