生成器迭代器
列表生成式
現在有個需求,看列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],要求你把列表里的每個值加1,你怎么實現?你可能會想到2種方式
二逼青年版
>>> a [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> b = [] >>> for i in a:b.append(i+1) ... >>> b [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> a = b >>> a [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]普通青年版
a = [1,3,4,6,7,7,8,9,11]for index,i in enumerate(a):a[index] +=1 print(a)文藝青年版
>>> a [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> a = map(lambda x:x+1, a) >>> a <map object at 0x101d2c630> >>> for i in a:print(i) ... 3 5 7 9 11其實還有一種寫法,如下
裝逼青年版
>>> a = [i+1 for i in range(10)] >>> a [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]這樣的寫法就叫做列表生成式
生成器
通過列表生成式,我們可以直接創建一個列表。但是,受到內存限制,列表容量肯定是有限的。而且,創建一個包含100萬個元素的列表,不僅占用很大的存儲空間,如果我們僅僅需要訪問前面幾個元素,那后面絕大多數元素占用的空間都白白浪費了。
所以,如果列表元素可以按照某種算法推算出來,那我們是否可以在循環的過程中不斷推算出后續的元素呢?這樣就不必創建完整的list,從而節省大量的空間。在Python中,這種一邊循環一邊計算的機制,稱為生成器:generator。
要創建一個generator,有很多種方法。第一種方法很簡單,只要把一個列表生成式的[]改成(),就創建了一個generator:
>>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x1022ef630>創建L和g的區別僅在于最外層的[]和(),L是一個list,而g是一個generator。
我們可以直接打印出list的每一個元素,但我們怎么打印出generator的每一個元素呢?
如果要一個一個打印出來,可以通過next()函數獲得generator的下一個返回值:
>>> next(g) 0 >>> next(g) 1 >>> next(g) 4 >>> next(g) 9 >>> next(g) 16 >>> next(g) 25 >>> next(g) 36 >>> next(g) 49 >>> next(g) 64 >>> next(g) 81 >>> next(g) Traceback (most recent call last):File "<stdin>", line 1, in <module> StopIteration我們講過,generator保存的是算法,每次調用next(g)就計算出g的下一個元素的值,直到計算到最后一個元素,沒有更多的元素時,拋出StopIteration的錯誤。
當然,上面這種不斷調用next(g)實在是太變態了,正確的方法是使用for循環,因為generator也是可迭代對象:
>>> g = (x * x for x in range(10)) >>> for n in g: ... print(n) ... 0 1 4 9 16 25 36 49 64 81所以,我們創建了一個generator后,基本上永遠不會調用next(),而是通過for循環來迭代它,并且不需要關心StopIteration的錯誤。
generator非常強大。如果推算的算法比較復雜,用類似列表生成式的for循環無法實現的時候,還可以用函數來實現。
比如,著名的斐波拉契數列(Fibonacci),除第一個和第二個數外,任意一個數都可由前兩個數相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契數列用列表生成式寫不出來,但是,用函數把它打印出來卻很容易:
def fib(max):n, a, b = 0, 0, 1while n < max:print(b)a, b = b, a + bn = n + 1return 'done'注意,賦值語句:
a, b = b, a + b相當于:
t = a + b a = b b = t但不必顯式寫出臨時變量t就可以賦值。
上面的函數可以輸出斐波那契數列的前N個數:
>>> fib(10) 1 1 2 3 5 8 13 21 34 55 done仔細觀察,可以看出,fib函數實際上是定義了斐波拉契數列的推算規則,可以從第一個元素開始,推算出后續任意的元素,這種邏輯其實非常類似generator。
也就是說,上面的函數和generator僅一步之遙。要把fib函數變成generator,只需要把print(b)改為yield b就可以了:
def fib(max):n,a,b = 0,0,1while n < max:#print(b)yield ba,b = b,a+bn += 1return 'done'這就是定義generator的另一種方法。如果一個函數定義中包含yield關鍵字,那么這個函數就不再是一個普通函數,而是一個generator:
>>> f = fib(6) >>> f <generator object fib at 0x104feaaa0>這里,最難理解的就是generator和函數的執行流程不一樣。函數是順序執行,遇到return語句或者最后一行函數語句就返回。而變成generator的函數,在每次調用next()的時候執行,遇到yield語句返回,再次被next()調用時從上次返回的yield語句處繼續執行。
data = fib(10) print(data)print(data.__next__()) print(data.__next__()) print("干點別的事") print(data.__next__()) print(data.__next__()) print(data.__next__()) print(data.__next__()) print(data.__next__())#輸出 <generator object fib at 0x000002E33EEFFCA8> 1 1 干點別的事 2 3 5 8 13在上面fib的例子,我們在循環過程中不斷調用yield,就會不斷中斷。當然要給循環設置一個條件來退出循環,不然就會產生一個無限數列出來。同樣的,把函數改成generator后,我們基本上從來不會用next()來獲取下一個返回值,而是直接使用for循環來迭代:
>>> for n in fib(6): ... print(n) ... 1 1 2 3 5 8但是用for循環調用generator時,發現拿不到generator的return語句的返回值。如果想要拿到返回值,必須捕獲StopIteration錯誤,返回值包含在StopIteration的value中:
>>> g = fib(6) >>> while True: ... try: ... x = next(g) ... print('g:', x) ... except StopIteration as e: ... print('Generator return value:', e.value) ... break ... g: 1 g: 1 g: 2 g: 3 g: 5 g: 8 Generator return value: done關于如何捕獲錯誤,后面的錯誤處理還會詳細講解。
還可通過yield實現在單線程的情況下實現并發運算的效果
#_*_coding:utf-8_*_ __author__ = 'Alex Li'import time def consumer(name):print("%s 準備吃包子啦!" %name)while True:baozi = yieldprint("包子[%s]來了,被[%s]吃了!" %(baozi,name))def producer(name):c = consumer('A')c2 = consumer('B')c.__next__()c2.__next__()print("老子開始準備做包子啦!")for i in range(10):time.sleep(1)print("做了2個包子!")c.send(i)c2.send(i)producer("alex")通過生成器實現協程并行運算迭代器
我們已經知道,可以直接作用于for循環的數據類型有以下幾種:
一類是集合數據類型,如list、tuple、dict、set、str等;
一類是generator,包括生成器和帶yield的generator function。
這些可以直接作用于for循環的對象統稱為可迭代對象:Iterable。
可以使用isinstance()判斷一個對象是否是Iterable對象:
>>> from collections import Iterable >>> isinstance([], Iterable) True >>> isinstance({}, Iterable) True >>> isinstance('abc', Iterable) True >>> isinstance((x for x in range(10)), Iterable) True >>> isinstance(100, Iterable) False而生成器不但可以作用于for循環,還可以被next()函數不斷調用并返回下一個值,直到最后拋出StopIteration錯誤表示無法繼續返回下一個值了。
*可以被next()函數調用并不斷返回下一個值的對象稱為迭代器:Iterator。
可以使用isinstance()判斷一個對象是否是Iterator對象:
>>> from collections import Iterator >>> isinstance((x for x in range(10)), Iterator) True >>> isinstance([], Iterator) False >>> isinstance({}, Iterator) False >>> isinstance('abc', Iterator) False生成器都是Iterator對象,但list、dict、str雖然是Iterable,卻不是Iterator。
把list、dict、str等Iterable變成Iterator可以使用iter()函數:
>>> isinstance(iter([]), Iterator) True >>> isinstance(iter('abc'), Iterator) True你可能會問,為什么list、dict、str等數據類型不是Iterator?
這是因為Python的Iterator對象表示的是一個數據流,Iterator對象可以被next()函數調用并不斷返回下一個數據,直到沒有數據時拋出StopIteration錯誤。可以把這個數據流看做是一個有序序列,但我們卻不能提前知道序列的長度,只能不斷通過next()函數實現按需計算下一個數據,所以Iterator的計算是惰性的,只有在需要返回下一個數據時它才會計算。
Iterator甚至可以表示一個無限大的數據流,例如全體自然數。而使用list是永遠不可能存儲全體自然數的。
小結
凡是可作用于for循環的對象都是Iterable類型;
凡是可作用于next()函數的對象都是Iterator類型,它們表示一個惰性計算的序列;
集合數據類型如list、dict、str等是Iterable但不是Iterator,不過可以通過iter()函數獲得一個Iterator對象。
Python3的for循環本質上就是通過不斷調用next()函數實現的,例如:
for x in [1, 2, 3, 4, 5]:pass實際上完全等價于:
# 首先獲得Iterator對象: it = iter([1, 2, 3, 4, 5]) # 循環: while True:try:# 獲得下一個值:x = next(it)except StopIteration:# 遇到StopIteration就退出循環break轉載于:https://www.cnblogs.com/chairlin/p/10731449.html
總結
- 上一篇: Nhibernate 基础关系映射
- 下一篇: random(随机模块)