日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

softmax实现cifar10分类

發布時間:2024/4/15 编程问答 33 豆豆
生活随笔 收集整理的這篇文章主要介紹了 softmax实现cifar10分类 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?將cifar10改成單一通道后,套用前面的softmax分類,分類率40%左右,想哭。。。

?

?

In?[1]: %matplotlib inline from mxnet.gluon import data as gdata from mxnet import autograd,nd import gluonbook as gb import sys In?[2]: cifar_train = gdata.vision.CIFAR10(train=True) cifar_test = gdata.vision.CIFAR10(train=False) In?[3]: (len(cifar_train),len(cifar_test)) Out[3]: (50000, 10000) In?[4]: feature,label = cifar_train[0] In?[5]: feature.shape,feature.dtype Out[5]: ((32, 32, 3), numpy.uint8) In?[6]: label,type(label),label.dtype Out[6]: (6, numpy.int32, dtype('int32')) In?[7]: batch_size = 256 transformer = gdata.vision.transforms.ToTensor() In?[8]: if sys.platform.startswith('win'):num_workers = 0 # 0 表示不用額外的進程來加速讀取數據。 else:num_workers = 4train_iter = gdata.DataLoader(cifar_train.transform_first(transformer),batch_size, shuffle=True,num_workers=num_workers) test_iter = gdata.DataLoader(cifar_test.transform_first(transformer),batch_size, shuffle=False,num_workers=num_workers) In?[9]: len(train_iter) Out[9]: 196 In?[10]: for X,y in train_iter:print(X)break [[[[0.3137255 0.3019608 0.34509805 ... 0.2901961 0.30196080.34901962][0.36078432 0.35686275 0.32941177 ... 0.23137255 0.25098040.3764706 ][0.34509805 0.42352942 0.47058824 ... 0.1882353 0.196078430.3254902 ]...[0.7529412 0.654902 0.5882353 ... 0.67058825 0.66274510.78039217][0.72156864 0.60784316 0.5764706 ... 0.63529414 0.635294140.7372549 ][0.65882355 0.6117647 0.6039216 ... 0.67058825 0.66274510.6901961 ]][[0.3137255 0.28627452 0.3137255 ... 0.28627452 0.298039230.34509805][0.36078432 0.34117648 0.3019608 ... 0.22745098 0.247058820.37254903][0.34509805 0.40392157 0.44313726 ... 0.18431373 0.192156870.32156864]...[0.8039216 0.7058824 0.6431373 ... 0.7019608 0.698039230.8156863 ][0.7764706 0.6627451 0.6313726 ... 0.6666667 0.66666670.7764706 ][0.7176471 0.6666667 0.65882355 ... 0.7019608 0.698039230.7254902 ]][[0.21960784 0.2 0.23137255 ... 0.21176471 0.219607840.26666668][0.26666668 0.2509804 0.21960784 ... 0.14901961 0.168627460.29411766][0.2509804 0.31764707 0.36078432 ... 0.10588235 0.113725490.24313726]...[0.6039216 0.5058824 0.4392157 ... 0.49803922 0.482352940.5882353 ][0.5764706 0.4627451 0.43137255 ... 0.46666667 0.46274510.5529412 ][0.5137255 0.46666667 0.45882353 ... 0.5137255 0.498039220.5137255 ]]][[[0.14901961 0.14901961 0.15294118 ... 0.14509805 0.094117650.23137255][0.15686275 0.15686275 0.16078432 ... 0.15686275 0.113725490.2509804 ][0.16078432 0.16470589 0.16862746 ... 0.16862746 0.129411770.2627451 ]...[0.16862746 0.12156863 0.14901961 ... 0.30588236 0.423529420.24313726][0.16862746 0.1254902 0.13333334 ... 0.28235295 0.396078440.22352941][0.16470589 0.1254902 0.09411765 ... 0.19607843 0.294117660.16862746]][[0.15294118 0.15294118 0.15686275 ... 0.15294118 0.098039220.23529412][0.16078432 0.16078432 0.16470589 ... 0.16470589 0.117647060.25490198][0.16470589 0.16862746 0.17254902 ... 0.1764706 0.137254910.27058825]...[0.17254902 0.1254902 0.14901961 ... 0.23137255 0.30196080.19607843][0.16862746 0.1254902 0.13333334 ... 0.22745098 0.286274520.18039216][0.16862746 0.12941177 0.09411765 ... 0.1764706 0.247058820.14901961]][[0.13333334 0.13333334 0.13725491 ... 0.15686275 0.090196080.21568628][0.14117648 0.14117648 0.14509805 ... 0.16862746 0.109803920.23529412][0.14509805 0.14901961 0.15294118 ... 0.18039216 0.12549020.24705882]...[0.14901961 0.10980392 0.13333334 ... 0.17254902 0.219607840.15686275][0.14901961 0.11372549 0.12156863 ... 0.18431373 0.203921570.13333334][0.14901961 0.11372549 0.08627451 ... 0.16078432 0.211764710.1254902 ]]][[[0.07843138 0.08627451 0.10196079 ... 0.0627451 0.054901960.04705882][0.10980392 0.08627451 0.11764706 ... 0.06666667 0.054901960.04705882][0.09019608 0.07058824 0.09411765 ... 0.05882353 0.058823530.04705882]...[0.18039216 0.16862746 0.1882353 ... 0.13725491 0.137254910.13333334][0.14901961 0.15294118 0.16470589 ... 0.14901961 0.129411770.12156863][0.13725491 0.14117648 0.15686275 ... 0.13725491 0.121568630.11764706]][[0.08627451 0.09411765 0.10980392 ... 0.07058824 0.06274510.05490196][0.12156863 0.09411765 0.1254902 ... 0.07450981 0.06274510.05490196][0.10588235 0.08235294 0.10196079 ... 0.06666667 0.066666670.05490196]...[0.19607843 0.1882353 0.2 ... 0.15294118 0.152941180.14509805][0.16470589 0.17254902 0.1764706 ... 0.16078432 0.141176480.13333334][0.15294118 0.16078432 0.16862746 ... 0.14901961 0.133333340.12941177]][[0.07058824 0.07843138 0.09019608 ... 0.05882353 0.050980390.05098039][0.10980392 0.07450981 0.10588235 ... 0.0627451 0.054901960.05098039][0.08627451 0.05882353 0.08627451 ... 0.05490196 0.054901960.04705882]...[0.16078432 0.14901961 0.16862746 ... 0.1254902 0.12549020.12156863][0.12941177 0.13333334 0.14117648 ... 0.13333334 0.113725490.10588235][0.11764706 0.1254902 0.13333334 ... 0.12156863 0.105882350.10196079]]]...[[[0.20784314 0.36078432 0.85490197 ... 0.972549 0.96470590.96862745][0.22745098 0.35686275 0.827451 ... 0.9764706 0.968627450.9647059 ][0.3372549 0.5019608 0.90588236 ... 0.9764706 0.97647060.9647059 ]...[0.08627451 0.08627451 0.05098039 ... 0.15294118 0.109803920.09803922][0.14901961 0.09411765 0.05098039 ... 0.10980392 0.184313730.2784314 ][0.3882353 0.27058825 0.14117648 ... 0.07058824 0.117647060.16470589]][[0.09803922 0.24705882 0.8156863 ... 0.9411765 0.92549020.91764706][0.14509805 0.25882354 0.7882353 ... 0.9372549 0.92549020.8980392 ][0.2784314 0.43137255 0.88235295 ... 0.9372549 0.94117650.92941177]...[0.06666667 0.07450981 0.05098039 ... 0.13725491 0.094117650.08235294][0.14117648 0.09019608 0.05098039 ... 0.09803922 0.172549020.26666668][0.3882353 0.27450982 0.14117648 ... 0.0627451 0.109803920.15686275]][[0.10588235 0.26666668 0.827451 ... 0.9607843 0.94117650.92156863][0.14117648 0.28627452 0.8156863 ... 0.94509804 0.94117650.9254902 ][0.27450982 0.4392157 0.88235295 ... 0.9254902 0.94901960.96862745]...[0.0627451 0.07058824 0.04313726 ... 0.13725491 0.098039220.09019608][0.13333334 0.08235294 0.04313726 ... 0.09803922 0.17647060.27058825][0.38039216 0.2627451 0.13333334 ... 0.06666667 0.113725490.16078432]]][[[0.35686275 0.33333334 0.34901962 ... 0.19607843 0.18823530.1882353 ][0.38431373 0.37254903 0.39215687 ... 0.25882354 0.274509820.2627451 ][0.38431373 0.38039216 0.3882353 ... 0.2509804 0.254901980.24705882]...[0.7764706 0.76862746 0.72156864 ... 0.76862746 0.772549030.77254903][0.77254903 0.7647059 0.77254903 ... 0.76862746 0.768627460.77254903][0.7647059 0.75686276 0.7529412 ... 0.75686276 0.75294120.75686276]][[0.35686275 0.3372549 0.34509805 ... 0.20784314 0.203921570.19607843][0.3882353 0.38039216 0.39607844 ... 0.26666668 0.29019610.2627451 ][0.3882353 0.38039216 0.3882353 ... 0.2509804 0.266666680.25490198]...[0.78039217 0.77254903 0.73333335 ... 0.76862746 0.772549030.77254903][0.77254903 0.7647059 0.77254903 ... 0.76862746 0.768627460.77254903][0.7647059 0.75686276 0.75686276 ... 0.7490196 0.75294120.75686276]][[0.2901961 0.2627451 0.28235295 ... 0.13725491 0.137254910.13725491][0.34901962 0.3372549 0.36078432 ... 0.20392157 0.219607840.2 ][0.36078432 0.3529412 0.37254903 ... 0.20784314 0.215686280.21176471]...[0.77254903 0.7607843 0.72156864 ... 0.7607843 0.76470590.7647059 ][0.7647059 0.75686276 0.7607843 ... 0.7607843 0.76078430.7647059 ][0.7607843 0.7529412 0.7490196 ... 0.74509805 0.745098050.7490196 ]]][[[0.8745098 0.8784314 0.8784314 ... 0.8235294 0.80.7490196 ][0.83137256 0.8235294 0.827451 ... 0.7647059 0.745098050.73333335][0.8039216 0.79607844 0.8039216 ... 0.67058825 0.63137260.70980394]...[0.40784314 0.3647059 0.34901962 ... 0.29803923 0.274509820.28235295][0.41568628 0.36078432 0.35686275 ... 0.26666668 0.258823540.28627452][0.3882353 0.3529412 0.34117648 ... 0.2784314 0.266666680.28235295]][[0.8901961 0.89411765 0.89411765 ... 0.8117647 0.80392160.76862746][0.84705883 0.8392157 0.84313726 ... 0.75686276 0.745098050.7529412 ][0.81960785 0.8117647 0.81960785 ... 0.6627451 0.63137260.7294118 ]...[0.3372549 0.31764707 0.30588236 ... 0.2784314 0.254901980.2627451 ][0.32156864 0.29803923 0.29411766 ... 0.23921569 0.235294120.25882354][0.29411766 0.28235295 0.27450982 ... 0.2509804 0.247058820.25882354]][[0.9372549 0.9411765 0.9411765 ... 0.85490197 0.86274510.8352941 ][0.89411765 0.8862745 0.8901961 ... 0.79607844 0.80392160.81960785][0.8666667 0.85882354 0.8666667 ... 0.7019608 0.69019610.79607844]...[0.23921569 0.20784314 0.19607843 ... 0.30588236 0.26274510.2627451 ][0.23529412 0.2 0.19607843 ... 0.26666668 0.231372550.2509804 ][0.21960784 0.2 0.1882353 ... 0.27058825 0.239215690.2509804 ]]]] <NDArray 256x3x32x32 @cpu(0)> In?[11]: def wrapped_iter(data_iter):for X, y in data_iter:X = X[:, :1, :, :]yield X, yfor X, y in wrapped_iter(train_iter):print(X)print(y)breakfor X, y in wrapped_iter(test_iter):print(X)print(y)break [[[[0.40784314 0.3882353 0.40392157 ... 0.2509804 0.239215690.22745098][0.4 0.3882353 0.4 ... 0.2627451 0.26274510.23529412][0.39607844 0.38039216 0.4 ... 0.2901961 0.29019610.26666668]...[0.79607844 0.7882353 0.7882353 ... 0.59607846 0.584313750.5764706 ][0.74509805 0.7607843 0.74509805 ... 0.6431373 0.623529430.6117647 ][0.73333335 0.7254902 0.7372549 ... 0.6392157 0.64313730.6313726 ]]][[[1. 0.99215686 0.96862745 ... 0.62352943 0.68627450.8627451 ][1. 0.96862745 0.92156863 ... 0.5764706 0.69019610.7607843 ][1. 0.95686275 0.8745098 ... 0.63529414 0.75294120.7607843 ]...[0.49411765 0.5058824 0.58431375 ... 0.7019608 0.72941180.7490196 ][0.6431373 0.69803923 0.7254902 ... 0.7019608 0.71372550.7176471 ][0.8666667 0.9137255 0.8039216 ... 0.7058824 0.756862760.77254903]]][[[0.5411765 0.5411765 0.5647059 ... 0.29411766 0.219607840.25882354][0.58431375 0.56078434 0.5803922 ... 0.25490198 0.203921570.26666668][0.61960787 0.5686275 0.57254905 ... 0.23137255 0.219607840.25882354]...[0.59607846 0.6745098 0.70980394 ... 0.8352941 0.819607850.8 ][0.60784316 0.6901961 0.70980394 ... 0.8980392 0.917647060.8156863 ][0.6745098 0.75686276 0.7372549 ... 0.89411765 0.921568630.9098039 ]]]...[[[0.20392157 0.21176471 0.2 ... 0.14509805 0.168627460.13725491][0.19215687 0.20392157 0.21568628 ... 0.15294118 0.121568630.09019608][0.22352941 0.20784314 0.19607843 ... 0.21176471 0.172549020.09803922]...[0.49019608 0.47058824 0.5058824 ... 0.17254902 0.094117650.14509805][0.5019608 0.5882353 0.7019608 ... 0.1882353 0.180392160.18039216][0.42352942 0.5529412 0.68235296 ... 0.2 0.207843140.23137255]]][[[0.6431373 0.5803922 0.5921569 ... 0.24313726 0.36470590.27450982][0.69803923 0.6901961 0.5372549 ... 0.40392157 0.360784320.2901961 ][0.44705883 0.65882355 0.6 ... 0.49803922 0.35294120.29411766]...[0.827451 0.8039216 0.72156864 ... 0.25490198 0.254901980.29411766][0.89411765 0.8156863 0.7490196 ... 0.23529412 0.258823540.2901961 ][0.91764706 0.8392157 0.65882355 ... 0.22352941 0.227450980.27058825]]][[[0.04313726 0.07843138 0.14117648 ... 0.31764707 0.32549020.25882354][0.03529412 0.0627451 0.10980392 ... 0.3254902 0.282352950.2627451 ][0.01960784 0.05098039 0.07843138 ... 0.27450982 0.235294120.2901961 ]...[0.2627451 0.2901961 0.2509804 ... 0.32941177 0.349019620.3254902 ][0.24313726 0.21176471 0.1882353 ... 0.32941177 0.31372550.28627452][0.28235295 0.24705882 0.21960784 ... 0.3254902 0.294117660.26666668]]]] <NDArray 256x1x32x32 @cpu(0)>[2 9 4 7 3 1 3 5 9 6 2 9 4 4 9 5 3 7 2 9 3 2 1 4 3 1 0 6 7 4 4 0 5 6 3 3 82 6 1 8 1 4 0 7 1 4 8 4 5 1 0 6 8 1 0 8 4 4 7 0 9 9 2 6 4 4 2 7 3 4 3 0 09 2 4 0 7 6 5 9 6 5 0 0 0 6 7 8 8 7 7 8 7 9 3 4 4 6 1 0 5 6 0 6 6 7 1 8 92 2 5 2 9 9 8 6 2 4 3 1 7 0 2 4 8 3 6 3 7 2 4 4 9 2 3 7 0 6 9 4 9 6 6 7 68 2 5 4 7 6 0 2 9 5 9 3 1 5 9 2 1 7 7 0 5 0 5 2 3 9 7 1 3 5 5 7 0 6 2 3 15 3 6 2 2 5 7 0 7 5 8 5 9 7 0 7 2 8 1 7 4 2 3 8 6 1 6 1 6 0 8 8 8 7 9 4 26 6 9 1 5 2 5 1 4 6 1 8 9 2 4 7 0 4 3 3 6 5 9 4 1 0 2 5 9 3 1 6 6 6] <NDArray 256 @cpu(0)>[[[[0.61960787 0.62352943 0.64705884 ... 0.5372549 0.494117650.45490196][0.59607846 0.5921569 0.62352943 ... 0.53333336 0.490196080.46666667][0.5921569 0.5921569 0.61960787 ... 0.54509807 0.509803950.47058824]...[0.26666668 0.16470589 0.12156863 ... 0.14901961 0.050980390.15686275][0.23921569 0.19215687 0.13725491 ... 0.10196079 0.113725490.07843138][0.21176471 0.21960784 0.1764706 ... 0.09411765 0.133333340.08235294]]][[[0.92156863 0.90588236 0.9098039 ... 0.9137255 0.91372550.9098039 ][0.93333334 0.92156863 0.92156863 ... 0.9254902 0.92549020.92156863][0.92941177 0.91764706 0.91764706 ... 0.92156863 0.921568630.91764706]...[0.34117648 0.16862746 0.07450981 ... 0.6627451 0.71372550.7372549 ][0.32156864 0.18039216 0.14117648 ... 0.68235296 0.72549020.73333335][0.33333334 0.24313726 0.22745098 ... 0.65882355 0.70588240.7294118 ]]][[[0.61960787 0.61960787 0.54509807 ... 0.89411765 0.929411770.93333334][0.6666667 0.6745098 0.5921569 ... 0.9098039 0.96470590.9647059 ][0.68235296 0.6901961 0.6156863 ... 0.9019608 0.980392160.9607843 ]...[0.12156863 0.11764706 0.10196079 ... 0.14509805 0.035294120.01568628][0.09019608 0.10588235 0.09803922 ... 0.07450981 0.015686280.01960784][0.10980392 0.11764706 0.1254902 ... 0.01960784 0.015686280.02745098]]]...[[[0.2627451 0.26666668 0.27450982 ... 0.28235295 0.27843140.27450982][0.27058825 0.2784314 0.28627452 ... 0.2901961 0.29019610.28627452][0.2784314 0.28235295 0.28627452 ... 0.29411766 0.29019610.28627452]...[0.35686275 0.3882353 0.37254903 ... 0.30980393 0.349019620.3647059 ][0.33333334 0.35686275 0.34901962 ... 0.27058825 0.266666680.28235295][0.3254902 0.3372549 0.33333334 ... 0.2627451 0.266666680.25882354]]][[[0.7254902 0.7058824 0.6745098 ... 0.6156863 0.596078460.54901963][0.7921569 0.69411767 0.63529414 ... 0.6039216 0.57647060.5529412 ][0.7176471 0.6392157 0.627451 ... 0.5764706 0.57647060.5803922 ]...[0.6901961 0.62352943 0.6156863 ... 0.37254903 0.317647070.29803923][0.6784314 0.6392157 0.67058825 ... 0.39215687 0.384313730.36078432][0.64705884 0.59607846 0.62352943 ... 0.47843137 0.51764710.46666667]]][[[0.8 0.8039216 0.8156863 ... 0.8352941 0.847058830.84705883][0.80784315 0.8156863 0.827451 ... 0.8352941 0.82352940.827451 ][0.7882353 0.7921569 0.80784315 ... 0.78431374 0.768627460.76862746]...[0.5058824 0.50980395 0.52156866 ... 0.45882353 0.51372550.5294118 ][0.49411765 0.49803922 0.5058824 ... 0.4627451 0.51764710.5254902 ][0.4862745 0.49019608 0.49803922 ... 0.4509804 0.498039220.5058824 ]]]] <NDArray 256x1x32x32 @cpu(0)>[3 8 8 0 6 6 1 6 3 1 0 9 5 7 9 8 5 7 8 6 7 0 4 9 5 2 4 0 9 6 6 5 4 5 9 2 41 9 5 4 6 5 6 0 9 3 9 7 6 9 8 0 3 8 8 7 7 4 6 7 3 6 3 6 2 1 2 3 7 2 6 8 80 2 9 3 3 8 8 1 1 7 2 5 2 7 8 9 0 3 8 6 4 6 6 0 0 7 4 5 6 3 1 1 3 6 8 7 40 6 2 1 3 0 4 2 7 8 3 1 2 8 0 8 3 5 2 4 1 8 9 1 2 9 7 2 9 6 5 6 3 8 7 6 25 2 8 9 6 0 0 5 2 9 5 4 2 1 6 6 8 4 8 4 5 0 9 9 9 8 9 9 3 7 5 0 0 5 2 2 38 6 3 4 0 5 8 0 1 7 2 8 8 7 8 5 1 8 7 1 3 0 5 7 9 7 4 5 9 8 0 7 9 8 2 7 69 4 3 9 6 4 7 6 5 1 5 8 8 0 4 0 5 5 1 1 8 9 0 3 1 9 2 2 5 3 9 9 4 0] <NDArray 256 @cpu(0)> In?[12]: from mxnet import gluon, init from mxnet.gluon import loss as gloss, nn In?[13]: net = nn.Sequential() net.add(nn.Dense(10)) net.initialize(init.Normal(sigma=0.01)) In?[14]: loss = gloss.SoftmaxCrossEntropyLoss() In?[25]: trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.0001}) In?[26]: num_epochs = 100 gb.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None,None, trainer) epoch 1, loss 1.6195, train acc 0.457, test acc 0.410 epoch 2, loss 1.6196, train acc 0.457, test acc 0.411 epoch 3, loss 1.6181, train acc 0.457, test acc 0.411 epoch 4, loss 1.6183, train acc 0.457, test acc 0.411 epoch 5, loss 1.6191, train acc 0.457, test acc 0.410 epoch 6, loss 1.6196, train acc 0.457, test acc 0.411 epoch 7, loss 1.6189, train acc 0.457, test acc 0.410 epoch 8, loss 1.6189, train acc 0.457, test acc 0.411 epoch 9, loss 1.6183, train acc 0.457, test acc 0.410 epoch 10, loss 1.6186, train acc 0.457, test acc 0.411 epoch 11, loss 1.6182, train acc 0.457, test acc 0.410 epoch 12, loss 1.6175, train acc 0.457, test acc 0.410 epoch 13, loss 1.6181, train acc 0.457, test acc 0.410 epoch 14, loss 1.6182, train acc 0.457, test acc 0.411 epoch 15, loss 1.6192, train acc 0.457, test acc 0.410 epoch 16, loss 1.6191, train acc 0.457, test acc 0.411 epoch 17, loss 1.6182, train acc 0.457, test acc 0.410 epoch 18, loss 1.6176, train acc 0.457, test acc 0.410 epoch 19, loss 1.6175, train acc 0.458, test acc 0.410 epoch 20, loss 1.6182, train acc 0.457, test acc 0.410 epoch 21, loss 1.6178, train acc 0.457, test acc 0.410 epoch 22, loss 1.6180, train acc 0.457, test acc 0.410 epoch 23, loss 1.6178, train acc 0.457, test acc 0.411 epoch 24, loss 1.6179, train acc 0.457, test acc 0.411 epoch 25, loss 1.6178, train acc 0.457, test acc 0.411 epoch 26, loss 1.6180, train acc 0.457, test acc 0.411 epoch 27, loss 1.6181, train acc 0.457, test acc 0.410 epoch 28, loss 1.6172, train acc 0.457, test acc 0.410 epoch 29, loss 1.6177, train acc 0.457, test acc 0.411 epoch 30, loss 1.6170, train acc 0.458, test acc 0.410 epoch 31, loss 1.6162, train acc 0.458, test acc 0.410 epoch 32, loss 1.6184, train acc 0.457, test acc 0.410 epoch 33, loss 1.6175, train acc 0.457, test acc 0.410 epoch 34, loss 1.6174, train acc 0.457, test acc 0.411 epoch 35, loss 1.6173, train acc 0.457, test acc 0.411 epoch 36, loss 1.6177, train acc 0.457, test acc 0.411 epoch 37, loss 1.6174, train acc 0.457, test acc 0.410 epoch 38, loss 1.6174, train acc 0.457, test acc 0.410 epoch 39, loss 1.6171, train acc 0.457, test acc 0.411 epoch 40, loss 1.6178, train acc 0.457, test acc 0.410 epoch 41, loss 1.6173, train acc 0.457, test acc 0.410 epoch 42, loss 1.6169, train acc 0.457, test acc 0.411 epoch 43, loss 1.6166, train acc 0.457, test acc 0.410 epoch 44, loss 1.6172, train acc 0.457, test acc 0.410 epoch 45, loss 1.6166, train acc 0.457, test acc 0.410 epoch 46, loss 1.6174, train acc 0.457, test acc 0.410 epoch 47, loss 1.6170, train acc 0.457, test acc 0.410 epoch 48, loss 1.6166, train acc 0.457, test acc 0.410 epoch 49, loss 1.6165, train acc 0.457, test acc 0.410 epoch 50, loss 1.6163, train acc 0.457, test acc 0.410 epoch 51, loss 1.6167, train acc 0.457, test acc 0.410 epoch 52, loss 1.6172, train acc 0.457, test acc 0.410 epoch 53, loss 1.6163, train acc 0.458, test acc 0.410 epoch 54, loss 1.6166, train acc 0.457, test acc 0.410 epoch 55, loss 1.6163, train acc 0.457, test acc 0.410 epoch 56, loss 1.6171, train acc 0.457, test acc 0.410 epoch 57, loss 1.6170, train acc 0.457, test acc 0.410 epoch 58, loss 1.6163, train acc 0.457, test acc 0.410 epoch 59, loss 1.6160, train acc 0.458, test acc 0.410 epoch 60, loss 1.6163, train acc 0.457, test acc 0.410 epoch 61, loss 1.6165, train acc 0.457, test acc 0.410 epoch 62, loss 1.6157, train acc 0.457, test acc 0.410 epoch 63, loss 1.6169, train acc 0.457, test acc 0.410 epoch 64, loss 1.6158, train acc 0.457, test acc 0.410 epoch 65, loss 1.6167, train acc 0.457, test acc 0.410 epoch 66, loss 1.6162, train acc 0.458, test acc 0.410 epoch 67, loss 1.6167, train acc 0.457, test acc 0.410 epoch 68, loss 1.6163, train acc 0.457, test acc 0.409 epoch 69, loss 1.6170, train acc 0.457, test acc 0.410 epoch 70, loss 1.6164, train acc 0.457, test acc 0.410 epoch 71, loss 1.6166, train acc 0.457, test acc 0.410 epoch 72, loss 1.6157, train acc 0.457, test acc 0.410 epoch 73, loss 1.6159, train acc 0.457, test acc 0.410 epoch 74, loss 1.6163, train acc 0.457, test acc 0.410 epoch 75, loss 1.6162, train acc 0.457, test acc 0.410 epoch 76, loss 1.6154, train acc 0.457, test acc 0.409 epoch 77, loss 1.6161, train acc 0.457, test acc 0.410 epoch 78, loss 1.6169, train acc 0.457, test acc 0.409 epoch 79, loss 1.6154, train acc 0.457, test acc 0.409 epoch 80, loss 1.6162, train acc 0.457, test acc 0.409 epoch 81, loss 1.6163, train acc 0.457, test acc 0.410 epoch 82, loss 1.6161, train acc 0.457, test acc 0.409 epoch 83, loss 1.6156, train acc 0.457, test acc 0.410 epoch 84, loss 1.6153, train acc 0.458, test acc 0.409 epoch 85, loss 1.6159, train acc 0.457, test acc 0.409 epoch 86, loss 1.6164, train acc 0.457, test acc 0.410 epoch 87, loss 1.6154, train acc 0.457, test acc 0.410 epoch 88, loss 1.6152, train acc 0.457, test acc 0.410 epoch 89, loss 1.6154, train acc 0.457, test acc 0.410 epoch 90, loss 1.6155, train acc 0.457, test acc 0.409 epoch 91, loss 1.6160, train acc 0.458, test acc 0.409 epoch 92, loss 1.6148, train acc 0.458, test acc 0.409 epoch 93, loss 1.6156, train acc 0.457, test acc 0.409 epoch 94, loss 1.6152, train acc 0.457, test acc 0.409 epoch 95, loss 1.6157, train acc 0.458, test acc 0.410 epoch 96, loss 1.6152, train acc 0.458, test acc 0.410 epoch 97, loss 1.6152, train acc 0.457, test acc 0.410 epoch 98, loss 1.6151, train acc 0.457, test acc 0.410 epoch 99, loss 1.6150, train acc 0.457, test acc 0.409 epoch 100, loss 1.6158, train acc 0.457, test acc 0.410 In?[17]: gb.train_ch3?? In?[?]:

轉載于:https://www.cnblogs.com/TreeDream/p/10020362.html

總結

以上是生活随笔為你收集整理的softmax实现cifar10分类的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 91伦理在线 | 亚洲人在线观看视频 | 精品一区二区三区电影 | 波多野结衣加勒比 | 天天碰天天碰 | 简单av在线| 毛片基地在线播放 | av在线免费观看网站 | 亚洲黄色免费观看 | 不卡视频在线观看 | 在线看v片| 亚洲大片免费观看 | 国产免费成人av | 欧美一级夜夜爽 | 亚洲春色在线观看 | xvideos成人免费视频 | 日韩精品一区二区三区在线 | 免费高清视频在线观看 | 久久久久久草 | 久久精品国产av一区二区三区 | 狠狠热免费视频 | 91成人一区 | 精品人妻一区二区三区日产乱码 | 日韩电影中文字幕在线观看 | 久久久999视频 | 国产永久毛片 | 九九热这里只有 | 国产视频资源 | 亚洲老女人视频 | 日本加勒比一区 | 少妇户外露出[11p] | 91国内精品久久久 | 日本成人在线网站 | 天天操操夜夜操操 | 久久夜夜操 | 97超碰精品 | 思思99精品视频在线观看 | 日本网站在线 | 日本黄色录像片 | 开心综合网 | 国产一区二区三区免费观看视频 | 亚欧激情 | 国内精品在线播放 | 特级淫片裸体免费看冫 | 新香蕉视频 | 疯狂撞击丝袜人妻 | 精精国产xxxx视频在线 | 久久婷婷色 | 黄色三级免费网站 | 精久久久 | 欧美日韩一区二区视频观看 | 久操不卡 | 奶波霸巨乳一二三区乳 | 日韩黄色在线 | 黄色免费版 | 黄色av片三级三级三级免费看 | 午夜一级在线 | 97中文在线 | 一级不卡毛片 | 欧美日韩免费高清一区色橹橹 | 嫩草在线观看视频 | 日韩综合中文字幕 | 精品久久久久久无码国产 | 久久久久久国产免费a片 | 韩国一区二区三区在线观看 | www国产在线观看 | 久久精品免费播放 | 天天做天天躁天天躁 | av小说免费在线观看 | 日韩大片免费观看视频播放 | 一级黄色片在线看 | 黄色片高清 | 黄色一级小说 | 欧美精品一区二区三区四区五区 | 欧美视频在线播放 | 网站在线免费观看 | 日日狠狠久久 | 久热网站 | 成人免费视频网站在线看 | 午夜不卡av免费 | 日日操天天操 | 青青草视频观看 | 人妻大战黑人白浆狂泄 | 欧美区亚洲区 | 国产伦精品一区二区三区高清版禁 | 日韩www.| 亚洲黄色成人 | 91麻豆精品国产 | 大学生三级中国dvd 日韩欧美一区二区区 | 四虎影视免费永久观看在线 | 色欧洲 | 韩国黄色精品 | 欧美另类国产 | 伊人97| 色姑娘综合网 | 天堂中文字幕在线观看 | 秋霞成人 | 变态另类一区二区 | 久久精品国产亚洲AV无码男同 |