日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

MapReduce-流量统计求和-FlowBean和Mapper代码编写

發(fā)布時間:2024/4/13 编程问答 42 豆豆
生活随笔 收集整理的這篇文章主要介紹了 MapReduce-流量统计求和-FlowBean和Mapper代码编写 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

流量統(tǒng)計

需求一: 統(tǒng)計求和

統(tǒng)計每個手機號的上行流量總和,下行流量總和,上行總流量之和,下行總流量之和分析:以手機號碼作為key值,上行流量,下行流量,上行總流量,下行總流量四個字段作為value值,然后以這個key,和value作為map階段的輸出,reduce階段的輸入

Step 1: 自定義map的輸出value對象FlowBean

package cn.learn.mapreduce_flowcount;import org.apache.hadoop.io.Writable;import java.io.DataInput; import java.io.DataOutput; import java.io.IOException;public class FlowBean implements Writable {private Integer upFlow;private Integer downFlow;private Integer upCountFlow;private Integer downCountFlow;public Integer getUpFlow() {return upFlow;}public void setUpFlow(Integer upFlow) {this.upFlow = upFlow;}public Integer getDownFlow() {return downFlow;}public void setDownFlow(Integer downFlow) {this.downFlow = downFlow;}public Integer getUpCountFlow() {return upCountFlow;}public void setUpCountFlow(Integer upCountFlow) {this.upCountFlow = upCountFlow;}public Integer getDownCountFlow() {return downCountFlow;}public void setDownCountFlow(Integer downCountFlow) {this.downCountFlow = downCountFlow;}@Overridepublic String toString() {returnupFlow +"\t" + downFlow +"\t" + upCountFlow +"\t" + downCountFlow;}@Overridepublic void write(DataOutput dataOutput) throws IOException {dataOutput.writeInt(upFlow);dataOutput.writeInt(downFlow);dataOutput.writeInt(upCountFlow);dataOutput.writeInt(downCountFlow);}@Overridepublic void readFields(DataInput dataInput) throws IOException {this.upFlow = dataInput.readInt();this.downFlow = dataInput.readInt();this.upCountFlow = dataInput.readInt();this.downCountFlow = dataInput.readInt();} }

Step 2: 定義FlowMapper類

package cn.learn.mapreduce_flowcount;import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class FlowCountMapper extends Mapper<LongWritable,Text,Text,FlowBean> {@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//1:拆分手機號String[] split = value.toString().split("\t");String phoneNum = split[1];//2:獲取四個流量字段FlowBean flowBean = new FlowBean();flowBean.setUpFlow(Integer.parseInt(split[6]));flowBean.setDownFlow(Integer.parseInt(split[7]));flowBean.setUpCountFlow(Integer.parseInt(split[8]));flowBean.setDownCountFlow(Integer.parseInt(split[9]));//3:將k2和v2寫入上下文中context.write(new Text(phoneNum), flowBean);} }

?

總結(jié)

以上是生活随笔為你收集整理的MapReduce-流量统计求和-FlowBean和Mapper代码编写的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。