边缘计算和雾计算什么关系_什么是雾计算?
邊緣計算和霧計算什么關(guān)系
By now most people are more than familiar with the concept of Cloud Computing, but what about the new concept referred to as Fog Computing? Today’s Q&A post takes a look at this new concept and how it differs from Cloud Computing.
到目前為止,大多數(shù)人對云計算的概念已經(jīng)非常熟悉,但是稱為霧計算的新概念又如何呢? 今天的問答環(huán)節(jié)將探討這個新概念及其與云計算的區(qū)別。
Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites.
今天的“問答”環(huán)節(jié)由SuperUser提供,它是Stack Exchange的一個分支,該社區(qū)是由社區(qū)驅(qū)動的Q&A網(wǎng)站分組。
Image courtesy of The Paper Wall.
圖片由“紙墻”提供 。
問題 (The Question)
SuperUser reader user1306322 wants to know what fog computing is:
超級用戶閱讀器user1306322想知道什么是霧計算:
I am reading a work on Cloud services and it touches briefly on “Fog Computing” as an example of a possible future development branch of software-hardware infrastructure, but does not specify what it is exactly or any of its benefits.
我正在閱讀有關(guān)云服務(wù)的工作,它簡要地介紹了“霧計算”,作為軟件硬件基礎(chǔ)結(jié)構(gòu)將來可能的開發(fā)分支的一個示例,但沒有說明其確切含義或任何好處。
Wikipedia has a few words about “Fog Computing” on its Edge Computing page. I suppose it could mean that processing is distributed unevenly between a set of devices, but it is somehow different from concentrating all processing on a central data server (Cloud Computing) or end-user devices (Edge Computing), but I am not sure.
維基百科的“ 邊緣計算”頁面上有一些關(guān)于“霧計算”的詞。 我想這可能意味著處理在一組設(shè)備之間分布不均,但這與將所有處理集中在中央數(shù)據(jù)服務(wù)器(云計算)或最終用戶設(shè)備(邊緣計算)上有所不同,但是我不確定。
So what exactly is “Fog Computing”?
那么“霧計算”到底是什么?
What is “Fog Computing” and how is it different from “Cloud Computing”?
什么是“霧計算”,它與“云計算”有何不同?
答案 (The Answer)
SuperUser contributor Dan D. has the first answer for us:
超級用戶貢獻者Dan D.為我們提供了第一個答案:
Quoted from Cisco.com (By Dan D.):
引用Cisco.com (Dan D.)的話:
Fog Computing is a paradigm that extends Cloud computing and services to the edge of the network. Similar to Cloud, Fog provides data, compute, storage, and application services to end-users. The distinguishing Fog characteristics are its proximity to end-users, its dense geographical distribution, and its support for mobility. Services are hosted at the network edge or even end devices such as set-top-boxes or access points. By doing so, Fog reduces service latency, and improves QoS, resulting in superior user-experience. Fog Computing supports emerging Internet of Everything (IoE) applications that demand real-time/predictable latency (industrial automation, transportation, networks of sensors and actuators). Thanks to its wide geographical distribution the Fog paradigm is well positioned for real time big data and real time analytics. Fog supports densely distributed data collection points, hence adding a fourth axis to the often mentioned Big Data dimensions (volume, variety, and velocity).
霧計算是將云計算和服務(wù)擴展到網(wǎng)絡(luò)邊緣的范例。 與Cloud類似,Fog向最終用戶提供數(shù)據(jù),計算,存儲和應(yīng)用程序服務(wù)。 Fog的顯著特征是其與最終用戶的距離近,地理分布密集以及對移動性的支持。 服務(wù)托管在網(wǎng)絡(luò)邊緣甚至是機頂盒或接入點之類的終端設(shè)備上。 這樣,Fog減少了服務(wù)等待時間,并改善了QoS,從而帶來了卓越的用戶體驗。 Fog Computing支持新興的萬物互聯(lián)(IoE)應(yīng)用程序,這些應(yīng)用程序需要實時/可預(yù)測的延遲(工業(yè)自動化,運輸,傳感器和執(zhí)行器網(wǎng)絡(luò))。 由于其廣泛的地理分布,Fog范例非常適合實時大數(shù)據(jù)和實時分析。 霧支持密集分布的數(shù)據(jù)收集點,因此為經(jīng)常提到的大數(shù)據(jù)維度(體積,種類和速度)增加了第四條軸。
Unlike traditional data centers, Fog devices are geographically distributed over heterogeneous platforms, spanning multiple management domains. Cisco is interested in innovative proposals that facilitate service mobility across platforms, and technologies that preserve end-user and content security and privacy across domains.
與傳統(tǒng)的數(shù)據(jù)中心不同,Fog設(shè)備在地理上分布在跨多個管理域的異構(gòu)平臺上。 思科對促進跨平臺服務(wù)移動性的創(chuàng)新提案以及保持跨域最終用戶和內(nèi)容安全性以及隱私性的技術(shù)感興趣。
Fog provides unique advantages for services across several verticals such as IT, entertainment, advertising, personal computing etc. Cisco is specially interested in proposals that focus on Fog Computing scenarios related to Internet of Everything (IoE), Sensor Networks, Data Analytics and other data intensive services to demonstrate the advantages of such a new paradigm, to evaluate the trade-offs in both experimental and production deployments and to address potential research problems for those deployments.
Fog為IT,娛樂,廣告,個人計算等多個垂直領(lǐng)域的服務(wù)提供了獨特的優(yōu)勢。Cisco對專注于與萬物聯(lián)網(wǎng)(IoE),傳感器網(wǎng)絡(luò),數(shù)據(jù)分析和其他數(shù)據(jù)有關(guān)的Fog Computing方案的提案特別感興趣。密集服務(wù)以證明這種新范例的優(yōu)勢,評估實驗和生產(chǎn)部署之間的權(quán)衡,并解決這些部署的潛在研究問題。
To go with what Dan D. has shared/quoted from Cisco, we have a bit more to add from a quick bit of research that we did:
為了與Dan D.從Cisco共享/引用的內(nèi)容一起進行,我們從所做的一些快速研究中添加了更多內(nèi)容:
Note: You can read the full articles/posts via the links we have included below for each section.
注意:您可以通過下面每個部分提供的鏈接閱讀完整的文章/帖子。
Quoted from a PCWorld article about “Fog Computing”:
引用 PCWorld關(guān)于“霧計算”的文章 :
The so-called IoT (Internet of Things) encompasses a range of Internet-capable devices that could be almost limitless: Thermometers, electric meters, brake assemblies, blood pressure gauges and almost anything else that can be monitored or measured. The one thing they have in common is that they’re spread out around the world.
所謂的物聯(lián)網(wǎng)(IoT)涵蓋了幾乎無限的具有互聯(lián)網(wǎng)功能的設(shè)備:溫度計,電表,制動總成,血壓計以及幾乎任何其他可以監(jiān)視或測量的東西。 他們有一個共同點,就是他們分布在世界各地。
There can be huge amounts of data coming out of these devices. For example, a jet engine may produce 10TB of data about its performance and condition in just 30 minutes, according to Cisco. It’s often a waste of time and bandwidth to ship all the data from IoT devices into a cloud and then transmit the cloud’s responses back out to the edge, said Guido Jouret, vice president and general manager of Cisco’s Internet of Things Business Unit. Instead, some of the cloud’s work should take place in the routers themselves, specifically industrial-strength Cisco routers built to work in the field, he said.
這些設(shè)備可能會產(chǎn)生大量數(shù)據(jù)。 例如,據(jù)思科稱,噴氣發(fā)動機可能在短短30分鐘內(nèi)產(chǎn)生10TB的性能和狀態(tài)數(shù)據(jù)。 思科物聯(lián)網(wǎng)業(yè)務(wù)部副總裁兼總經(jīng)理Guido Jouret表示,將所有物聯(lián)網(wǎng)設(shè)備中的數(shù)據(jù)發(fā)送到云中,然后將云的響應(yīng)傳回邊緣,這通常是浪費時間和帶寬。 他說,云的某些工作應(yīng)該在路由器本身中進行,特別是要在現(xiàn)場工作的具有工業(yè)實力的思科路由器。
“This is all about location,” Jouret said. Using local instead of cloud computing has implications for performance, security and new ways of taking advantage of IoT, he said.
喬雷特說:“這全都與地點有關(guān)。” 他說,使用本地而不是云計算會對性能,安全性和利用物聯(lián)網(wǎng)的新方式產(chǎn)生影響。
Quoted from the definition/explanation at WhatIs.com:
引自 WhatIs.com 的定義/解釋 :
Fog computing, also known as fogging, is a model in which data, processing and applications are concentrated in devices at the network edge rather than existing almost entirely in the cloud.
霧計算(也稱為霧化)是一種模型,其中數(shù)據(jù),處理和應(yīng)用程序集中在網(wǎng)絡(luò)邊緣的設(shè)備中,而不是幾乎全部存在于云中。
That concentration means that data can be processed locally in smart devices rather than being sent to the cloud for processing. Fog computing is one approach to dealing with the demands of the ever-increasing number of Internet-connected devices sometimes referred to as the Internet of Things (IoT).
這種集中意味著可以在智能設(shè)備中本地處理數(shù)據(jù),而不是將其發(fā)送到云中進行處理。 霧計算是一種解決日益增長的互聯(lián)網(wǎng)連接設(shè)備(有時稱為物聯(lián)網(wǎng)(IoT))需求的方法。
In the IoT scenario, a thing is any natural or man-made object that can be assigned an IP address and provided with the ability to transfer data over a network. Some such things can create a lot of data. Cisco provides the example of a jet engine, which they say can create 10 terabytes (TB) of data about its performance and condition in a half-hour. Transmitting all that data to the cloud and transmitting response data back puts a great deal of demand on bandwidth, requires a considerable amount of time and can suffer from latency. In a fog computing environment, much of the processing would take place in a router, rather than having to be transmitted.
在物聯(lián)網(wǎng)場景中,事物是可以分配IP地址并具有通過網(wǎng)絡(luò)傳輸數(shù)據(jù)的能力的任何自然或人造對象。 一些這樣的事情可以創(chuàng)建很多數(shù)據(jù)。 思科提供了噴氣發(fā)動機的示例,他們說噴氣發(fā)動機可以在半小時內(nèi)創(chuàng)建10 TB的性能和運行狀況數(shù)據(jù)。 將所有這些數(shù)據(jù)傳輸?shù)皆浦?#xff0c;然后將響應(yīng)數(shù)據(jù)傳輸回去,這對帶寬提出了很高的要求,需要大量時間,并且可能會出現(xiàn)延遲。 在霧計算環(huán)境中,許多處理將在路由器中進行,而不必進行傳輸。
As you can see, “Fog Computing” focuses on lifting part of the work load off of regular cloud services by using localized resources in order to provide a quicker, smoother, and more streamlined experience for users. What are your thoughts on “Fog Computing”? Do you think it will become as popular and useful as Cloud Computing or would you classify it as a “marketing fad” with no future?
如您所見,“霧計算”致力于通過使用本地化資源來減輕常規(guī)云服務(wù)的部分工作負(fù)擔(dān),以便為用戶提供更快,更流暢,更簡化的體驗。 您對“霧計算”有何看法? 您是否認(rèn)為它會像云計算一樣流行和有用,還是您將其歸類為“沒有任何前途的營銷風(fēng)尚”?
Have something to add to the explanation? Sound off in the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.
有什么補充說明嗎? 在評論中聽起來不錯。 是否想從其他精通Stack Exchange的用戶那里獲得更多答案? 在此處查看完整的討論線程 。
翻譯自: https://www.howtogeek.com/185876/what-is-fog-computing/
邊緣計算和霧計算什么關(guān)系
總結(jié)
以上是生活随笔為你收集整理的边缘计算和雾计算什么关系_什么是雾计算?的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 渗透测试搜索指令整理(一)
- 下一篇: 小马哥--高仿苹果6 主板型号S106