日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【达摩院OpenVI】视频目标渐进式Transformer跟踪器ProContEXT

發布時間:2024/3/13 编程问答 42 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【达摩院OpenVI】视频目标渐进式Transformer跟踪器ProContEXT 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

論文&代碼

  • 論文鏈接:[arxiv]
  • 代碼&應用:
    • 開源代碼:[github code]
    • 開源應用:[modelscope]

背景介紹

視頻目標跟蹤(Video Object Tracking, VOT)任務以一段視頻和第一幀中待跟蹤目標的位置信息(矩形框)作為輸入,在后續視頻幀中預測該跟蹤目標的精確位置。該任務對跟蹤目標的類別沒有限制,目的在于跟蹤感興趣的目標實例。該算法在學術界和工業界都是非常重要的一個研究課題,在自動駕駛、人機交互、視頻監控領域都有廣泛應用。

由于輸入視頻的多樣性,目標跟蹤算法需要適應諸如尺度變化、形狀變化、光照變化、遮擋等諸多挑戰。特別是在待跟蹤目標外觀變化劇烈、周圍存在相似物體干擾的情況下,跟蹤算法的精度往往急劇下降,甚至出現跟蹤失敗的情況。如圖1所示,對于一個輸入視頻,待跟蹤跟蹤物體(紅色虛線圓)會隨著時間而產生劇烈變化,相比于初始幀中的目標外觀,待跟蹤幀中的目標外觀會與中間幀的目標外觀更相似,因此中間幀的目標外觀形態是一個非常好的時域上下文信息。另外,對于跟蹤過程中目標物體周圍的空域上下文信息對算法鑒別相似物體和干擾背景有很大的幫助。

方法介紹

最近,一些基于Transformer網絡的視頻目標跟蹤算法,比如OSTrack[1], MixFormer[2], STARK[3]等,展現了較高的算法精度,基于之前的研究工作,本文提出了ProContEXT(Progressive Context Encoding Transformer Tracker),把時域上下文信息和空域上下文信息共同引入到Transformer網絡中。

ProContEXT的整體結構如圖2所示,該方法具有如下的特點:

  • ProContEXT是一種漸進式上下文感知的Transformer跟蹤器,在Transfomer跟蹤器中利用了動態的時域信息和多樣的空域信息進行特征提取,從而能獲得更加魯邦的跟蹤特征。
  • ProContEXT通過改進ViT主干網絡,在輸入中增加了多尺度靜態模板(static templates)和多尺度動態模板(dynamic templates),并通過上下文感知的自注意力機制模塊充分利用視頻跟蹤過程中目標的時域上下文和空域上下文信息。通過漸進式的模板優化和更新機制,跟蹤器能快速適應目標的外觀變化。
  • ProContEXT在多個公開數據集中(TrackingNet和GOT-10k)獲得SOTA性能,并且運行效率完全達到實時要求,速度為54.3FPS.
  • 實驗結果

    本文基于TrackingNet和GOT-10k數據集進行算法實驗,完全遵守各數據集的使用準則。

    SOTA對比

    首先,與目前SOTA方法的對比如下表所示,ProContEXT在TrackingNet數據集和在GOT-10K數據集均超過對比的算法,達到SOTA精度。

    消融實驗

    本文對靜態模板數目進行了消融實驗,結果如下表所示,當使用2個靜態模板時,效果最佳。表中實驗數據說明當使用更多靜態模板數目時,會引入冗余信息,導致跟蹤效果下降。

    另外,對動態模板的數目和尺度也進行了消融實驗,結果如下表所示,當加入動態模板時,跟蹤算法精度均有提升,并且使用兩個尺度的動態模板比只使用單個尺度算法精度有進一步提升。

    最后,對于算法中使用到的令牌修剪模塊中的超參也進行了探索,實驗結果如下表所示,當參數為0.7時達到算法精度和效率的最加平衡。

    模型傳送門

    視頻跟蹤模型:

    • 視頻單目標跟蹤ProContEXT:https://modelscope.cn/models/damo/cv_vitb_video-single-object-tracking_procontext/summary
    • 視頻單目標跟蹤OSTrack:https://modelscope.cn/models/damo/cv_vitb_video-single-object-tracking_ostrack/summary
    • 視頻多目標跟蹤FairMOT:https://modelscope.cn/models/damo/cv_yolov5_video-multi-object-tracking_fairmot/summary

    檢測相關模型:

    • 實時目標檢測模型YOLOX:https://modelscope.cn/models/damo/cv_cspnet_image-object-detection_yolox/summary
    • 高精度目標檢測模型DINO:https://modelscope.cn/models/damo/cv_swinl_image-object-detection_dino/summary
    • 實時目標檢測模型DAMO-YOLO:https://modelscope.cn/models/damo/cv_tinynas_object-detection_damoyolo/summary
    • 垂直行業目標檢測模型:https://modelscope.cn/models?page=1&tasks=vision-detection-tracking%3Adomain-specific-object-detection&type=cv

    關鍵點相關模型:

    • 2D人體關鍵點檢測模型-HRNet: https://modelscope.cn/models/damo/cv_hrnetv2w32_body-2d-keypoints_image/summary
    • 2D人臉關鍵點檢測模型-MobileNet:https://modelscope.cn/models/damo/cv_mobilenet_face-2d-keypoints_alignment/summary
    • 2D手部關鍵點檢測模型-HRNet:https://modelscope.cn/models/damo/cv_hrnetw18_hand-pose-keypoints_coco-wholebody/summary
    • 3D人體關鍵點檢測模型-HDFormer:https://modelscope.cn/models/damo/cv_hdformer_body-3d-keypoints_video/summary
    • 3D人體關鍵點檢測模型-TPNet:https://modelscope.cn/models/damo/cv_canonical_body-3d-keypoints_video/summary

    智能通行模型:

    • https://modelscope.cn/models/damo/cv_ddsar_face-detection_iclr23-damofd/summary
    • https://modelscope.cn/models/damo/cv_resnet50_face-detection_retinaface/summary
    • https://modelscope.cn/models/damo/cv_resnet101_face-detection_cvpr22papermogface/summary
    • https://modelscope.cn/models/damo/cv_manual_face-detection_tinymog/summary
    • https://modelscope.cn/models/damo/cv_manual_face-detection_ulfd/summary
    • https://modelscope.cn/models/damo/cv_manual_face-detection_mtcnn/summary
    • https://modelscope.cn/models/damo/cv_resnet_face-recognition_facemask/summary
    • https://modelscope.cn/models/damo/cv_ir50_face-recognition_arcface/summary
    • https://modelscope.cn/models/damo/cv_manual_face-liveness_flir/summary
    • https://modelscope.cn/models/damo/cv_manual_face-liveness_flrgb/summary
    • https://modelscope.cn/models/damo/cv_manual_facial-landmark-confidence_flcm/summary
    • https://modelscope.cn/models/damo/cv_vgg19_facial-expression-recognition_fer/summary
    • https://modelscope.cn/models/damo/cv_resnet34_face-attribute-recognition_fairface/summary

    更多模型詳見 ModelScope 主頁。

    檢測套件開發工具

    ModelScope社區視覺檢測開發套件AdaDet已發布。

    參考文獻

    • [1] Ye B, Chang H, Ma B, et al., “Joint feature learning and relation modeling for tracking: A one-stream framework”, in ECCV 2022, pp. 341-357.
    • [2] Cui Y, Jiang C, Wang L, et al., “Mixformer: End-to-end tracking with iterative mixed attention”, in CVPR 2022, pp. 13608-13618.
    • [3] Yan B, Peng H, Fu J, et al., “Learning spatio-temporal transformer for visual tracking”, in ICCV 2021, pp. 10448-10457.

    總結

    以上是生活随笔為你收集整理的【达摩院OpenVI】视频目标渐进式Transformer跟踪器ProContEXT的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 亚洲美女影院 | 国产精品国产三级国产aⅴ下载 | 一本色道久久综合亚洲精品小说 | 久本草精品 | 成年性生交大片免费看 | 亚洲字幕av| 狠狠操狠狠 | 91av福利视频 | 26uuu国产| 国产激情片 | 亚洲精品视频在线 | 久久艹在线 | 久久精品国产亚洲av麻豆蜜芽 | 成人在线免费视频 | 国产精品久久久久久久久久久久久久久久久久 | 亚洲污污视频 | 美女免费黄视频 | 免费麻豆国产一区二区三区四区 | 天天插天天透 | a级片免费视频 | 午夜毛片 | 亚洲男人天堂 | 欧美成人精品一区二区免费看片 | 黑人粗进入欧美aaaaa | 国产最新在线 | 性日本xxx | 成人影| 少妇人妻偷人精品无码视频 | 天天天天色| 看黄色一级片 | 久久视频在线看 | 国产免费网 | 国产真实交换夫妇视频 | 爱爱网站免费 | www.亚洲综合 | 精品一区二区三区在线免费观看 | 久久小草 | 精品中文字幕一区二区 | 9色av| 色网站视频 | 91嫩草精品 | 丰满人妻翻云覆雨呻吟视频 | 久久久久青草 | 小泽玛利亚一区二区三区在线观看 | 欧美 日韩 国产 成人 在线观看 | 中文字幕无码日韩专区免费 | 午夜免费福利网站 | 欧美激情图 | 亚洲影视一区二区三区 | 奇米在线| 国精产品一区一区三区视频 | 色久影院 | 9999re| 在线播放色 | 中文字幕丰满孑伦无码专区 | 在线观看日本 | 97精品国产露脸对白 | www.蜜桃av.com| 91欧美在线视频 | 国产亚洲二区 | 国产亚洲性欧美日韩在线观看软件 | 91午夜精品亚洲一区二区三区 | 亚洲天天| 色婷婷五 | 狠狠干少妇 | 色妺妺视频网 | 91免费版黄 | 啄木乌欧美一区二区三区 | 国产精品久久久久久久久久久久久久 | 亚色视频在线观看 | 性色浪潮| 一区二区视频在线观看免费 | 国产精品免费一区二区三区在线观看 | 永久免费在线播放 | 亚洲综合免费视频 | 国产一区精品视频 | 欧美黑人狂野猛交老妇 | 91蜜桃传媒精品久久久一区二区 | 国偷自产av一区二区三区麻豆 | 午夜亚洲视频 | 亚洲永久在线观看 | 久久av高潮av无码av喷吹 | 国产一区二区三区免费在线观看 | 中文视频在线观看 | 日韩一级淫片 | 丰满的女邻居 | 五月天男人天堂 | 欧美日韩国产一区 | 在线免费精品视频 | 91原创视频在线观看 | 九七久久 | 日本在线免费播放 | 白嫩情侣偷拍呻吟刺激 | 少妇av在线播放 | 欧美日韩国产免费 | 国产男男gay体育生网站 | 91麻豆蜜桃 | 乱妇乱女熟妇熟女网站 | 国产少女免费观看高清 |