日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > 目标检测 >内容正文

目标检测

墨尘目标检测4--yoyo3模型解析及训练自己的数据集

發布時間:2024/3/12 目标检测 72 豆豆
生活随笔 收集整理的這篇文章主要介紹了 墨尘目标检测4--yoyo3模型解析及训练自己的数据集 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

YOLOv3相比于之前的yolo1和yolo2,改進較大,主要改進方向有:

1、主干網絡修改為darknet53,其重要特點是使用了殘差網絡Residual,darknet53中的殘差卷積就是進行一次3X3、步長為2的卷積,然后保存該卷積layer,再進行一次1X1的卷積和一次3X3的卷積,并把這個結果加上layer作為最后的結果, 殘差網絡的特點是容易優化,并且能夠通過增加相當的深度來提高準確率。其內部的殘差塊使用了跳躍連接,緩解了在深度神經網絡中增加深度帶來的梯度消失問題。

2、darknet53的每一個卷積部分使用了特有的DarknetConv2D結構,每一次卷積的時候進行l2正則化,完成卷積后進行BatchNormalization標準化與LeakyReLU。普通的ReLU是將所有的負值都設為零,Leaky ReLU則是給所有負值賦予一個非零斜率。以數學的方式我們可以表示為:

總結

以上是生活随笔為你收集整理的墨尘目标检测4--yoyo3模型解析及训练自己的数据集的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。