日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

NICO dataset

發布時間:2024/3/12 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 NICO dataset 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

下載

[大小]:8.22G

[鏈接]:https://pan.baidu.com/s/1sOwi-_19zvJpr7wf8QNFFw

[提取碼]:ev5n

?

樣本圖片

Animals

Vehicle

Overview

NICO dataset is dedicatedly designed for Non-I.I.D. or OOD (Out-of-Distribution) image classification. It simulates a real world setting that the testing distribution may induce arbitrary shifting from the training distribution, which violates the traditional I.I.D. hypothesis of most ML methods. The typical research directions that the dataset can well support include but are not limited to transfer learning or domain adaptation (when testing distribution is known) and stable learning or domain generalization (when testing distribution is unknown).
The basic idea of constructing the dataset is to label images with both main concepts (e.g. dog) and the contexts (e.g. on grass) that visual concepts appear in. By adjusting the proportions of different contexts in training and testing data, one can control the degree of distribution shift flexibly and conduct studies on different kinds of Non-I.I.D. settings.
Till now, there are two superclasses:?Animal and Vehicle, with 10 classes for Animal and 9 classes for Vehicle. Each class has 9 or 10 contexts. The average number of images per context ranges from 83 to 215, and the average number of images per class is about 1300 images (similar to ImageNet). In total, NICO contains 19 classes, 188 contexts and nearly 25,000 images. The current version has been able to support the training of deep convolution networks (e.g. ResNet-18) from scratch. The scale is still increasing, and is easy to be expanded because of the hierarchical structure.

Data Format

The?hierarchical structure is shown as below:

G:\shannon\deeplearning_dataset\NICO>tree 卷 study_work 的文件夾 PATH 列表 卷序列號為 E836-4D9C G:. ├─NICO_Animal │ └─Animal │ ├─bear │ │ ├─black │ │ ├─brown │ │ ├─eating grass │ │ ├─in forest │ │ ├─in water │ │ ├─lying │ │ ├─on ground │ │ ├─on snow │ │ ├─on tree │ │ └─white │ ├─bird │ │ ├─eating │ │ ├─flying │ │ ├─in cage │ │ ├─in hand │ │ ├─in water │ │ ├─on branch │ │ ├─on grass │ │ ├─on ground │ │ ├─on shoulder │ │ └─standing │ ├─cat │ │ ├─at home │ │ ├─eating │ │ ├─in cage │ │ ├─in river │ │ ├─in street │ │ ├─in water │ │ ├─on grass │ │ ├─on snow │ │ ├─on tree │ │ └─walking │ ├─cow │ │ ├─aside people │ │ ├─at home │ │ ├─eating │ │ ├─in forest │ │ ├─in river │ │ ├─lying │ │ ├─on grass │ │ ├─on snow │ │ ├─spotted │ │ └─standing │ ├─dog │ │ ├─at home │ │ ├─eating │ │ ├─in cage │ │ ├─in street │ │ ├─in water │ │ ├─lying │ │ ├─on beach │ │ ├─on grass │ │ ├─on snow │ │ └─running │ ├─elephant │ │ ├─eating │ │ ├─in circus │ │ ├─in forest │ │ ├─in river │ │ ├─in street │ │ ├─in zoo │ │ ├─lying │ │ ├─on grass │ │ ├─on snow │ │ └─standing │ ├─horse │ │ ├─aside people │ │ ├─at home │ │ ├─in forest │ │ ├─in river │ │ ├─in street │ │ ├─lying │ │ ├─on beach │ │ ├─on grass │ │ ├─on snow │ │ └─running │ ├─monkey │ │ ├─climbing │ │ ├─eating │ │ ├─in cage │ │ ├─in forest │ │ ├─in water │ │ ├─on beach │ │ ├─on grass │ │ ├─on snow │ │ ├─sitting │ │ └─walking │ ├─rat │ │ ├─at home │ │ ├─eating │ │ ├─in cage │ │ ├─in forest │ │ ├─in hole │ │ ├─in water │ │ ├─lying │ │ ├─on grass │ │ ├─on snow │ │ └─running │ └─sheep │ ├─aside people │ ├─at sunset │ ├─eating │ ├─in forest │ ├─in water │ ├─lying │ ├─on grass │ ├─on road │ ├─on snow │ └─walking └─NICO_Vehicle└─Vehicle├─airplane│ ├─around cloud│ ├─aside mountain│ ├─at airport│ ├─at night│ ├─in city│ ├─in sunrise│ ├─on beach│ ├─on grass│ ├─taking off│ └─with pilot├─bicycle│ ├─in garage│ ├─in street│ ├─in sunset│ ├─on beach│ ├─on grass│ ├─on road│ ├─on snow│ ├─shared│ ├─velodrome│ └─with people├─boat│ ├─at wharf│ ├─cross bridge│ ├─in city│ ├─in river│ ├─in sunset│ ├─on beach│ ├─sailboat│ ├─with people│ ├─wooden│ └─yacht├─bus│ ├─aside traffic light│ ├─aside tree│ ├─at station│ ├─at yard│ ├─double decker│ ├─in city│ ├─on bridge│ ├─on snow│ └─with people├─car│ ├─at park│ ├─in city│ ├─in sunset│ ├─on beach│ ├─on booth│ ├─on bridge│ ├─on road│ ├─on snow│ ├─on track│ └─with people├─helicopter│ ├─aside mountain│ ├─at heliport│ ├─in city│ ├─in forest│ ├─in sunset│ ├─on beach│ ├─on grass│ ├─on sea│ ├─on snow│ └─with people├─motorcycle│ ├─in city│ ├─in garage│ ├─in street│ ├─in sunset│ ├─on beach│ ├─on grass│ ├─on road│ ├─on snow│ ├─on track│ └─with people├─train│ ├─aside mountain│ ├─at station│ ├─cross tunnel│ ├─in forest│ ├─in sunset│ ├─on beach│ ├─on bridge│ ├─on snow│ └─subway└─truck├─aside mountain├─in city├─in forest├─in race├─in sunset├─on beach├─on bridge├─on grass├─on road└─on snow

Citation

Please use the following citation when referencing the dataset:

@inproceedings{Johnson10,title = {Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation},author = {Johnson, Sam and Everingham, Mark},year = {2010},booktitle = {Proceedings of the British Machine Vision Conference},note = {doi:10.5244/C.24.12} }

總結

以上是生活随笔為你收集整理的NICO dataset的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。