日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

pytorch MSELoss参数详解

發布時間:2024/3/12 编程问答 39 豆豆
生活随笔 收集整理的這篇文章主要介紹了 pytorch MSELoss参数详解 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

pytorch MSELoss參數詳解

import torch import numpy as np loss_fn = torch.nn.MSELoss(reduce=False, size_average=False) a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)loss_fn = torch.nn.MSELoss(reduce=False, size_average=True) a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) loss_fn = torch.nn.MSELoss(reduce=True, size_average=False) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) loss_fn = torch.nn.MSELoss(reduce=True, size_average=True) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) loss_fn = torch.nn.MSELoss()##reduce=True, size_average=True input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)loss_fn = torch.nn.MSELoss(reduction = 'none') a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)loss_fn = torch.nn.MSELoss(reduction = 'sum') a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)loss_fn = torch.nn.MSELoss(reduction = 'none') a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)loss_fn = torch.nn.MSELoss(reduction = 'elementwise_mean') a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)

總結

以上是生活随笔為你收集整理的pytorch MSELoss参数详解的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。