人工智能在自动驾驶深度学习中的应用
人工智能在自動駕駛深度學習中的應用
駕駛員認知靠大腦,無人駕駛汽車的“大腦”則是計算機。無人車里的計算機與我們常用的臺式機、筆記本略有不同,因為車輛在行駛的時候會遇到顛簸、震動、粉塵甚至高溫的情況,一般計算機無法長時間運行在這些環境中。所以無人車一般選用工業環境下的計算機——工控機。
工控機上運行著操作系統,操作系統中運行著無人駕駛軟件。如圖1所示為某無人駕駛車軟件系統架構。操作系統之上是支撐模塊(這里模塊指的是計算機程序),對上層軟件模塊提供基礎服務。
支撐模塊包括:虛擬交換模塊,用于模塊間通信;日志管理模塊,用于日志記錄、檢索以及回放;進程監控模塊,負責監視整個系統的運行狀態,如果某個模塊運行不正常則提示操作人員并自動采取相應措施;交互調試模塊,負責開發人員與無人駕駛系統交互。
圖:某無人駕駛車軟件系統架構
除了對外界進行認知之外,機器還必須要能夠進行學習。深度學習是無人駕駛技術成功地基礎,深度學習是源于人工神經網絡的一種高效的機器學習方法。深度學習可以提高汽車識別道路、行人、障礙物等的時間效率,并保障了識別的正確率。通過大量數據的訓練之后,汽車可以將收集到的圖形,電磁波等信息轉換為可用的數據,利用深度學習算法實現無人駕駛。
在無人駕駛汽車通過雷達等收集到數據時,對于原始的訓練數據要首先進行數據的預處理化。計算均值并對數據的均值做均值標準化、對原始數據做主成分分析、使用PCA白化或ZCA白化。例如:將激光傳感器收集到的時間數據轉換為車與物體之間的距離;將車載攝像頭拍攝到的照片信息轉換為對路障的判斷,對紅綠燈的判斷,對行人的判斷等;雷達探測到的數據轉換為各個物體之間的距離。
將深度學習應用于無人駕駛汽車中,主要包含以下步驟:
準備數據,對數據進行預處理再選用合適的數據結構存儲訓練數據和測試元組;
輸入大量數據對第一層進行無監督學習;
通過第一層對數據進行聚類,將相近的數據劃分為同一類,隨機進行判斷;
運用監督學習調整第二層中各個節點的閥值,提高第二層數據輸入的正確性;
用大量的數據對每一層網絡進行無監督學習,并且每次用無監督學習只訓練一層,將其訓練結果作為其更高一層的輸入。
輸入之后用監督學習去調整所有層。
人工智能在自動駕駛信息共享中的應用
首先,利用無線網絡進行車與車之間的信息共享。通過專用通道,一輛汽車可以把自己的位置、路況實時分享給隊里的其它汽車,以便其它車輛的自動駕駛系統,在收到信息后做出相應調整。
其次,是3D路況感應,車輛將結合超聲波傳感器、攝像機、雷達和激光測距等技術,檢測出汽車前方約5米內地形地貌,判斷前方是柏油路還是碎石、草地、沙灘等路面,根據地形自動改變汽車設置。
另外,汽車還將能進行自動變速,一旦探測到地形發生改變,可以自動減速,路面恢復正常后,再回到原先狀態。
汽車信息共享所收集到的交通信息量將非常巨大,如果不對這些數據進行有效處理和利用,就會迅速被信息所湮沒。因此需要采用數據挖掘、人工智能等方式提取有效信息,同時過濾掉無用信息。考慮到車輛行駛過程中需要依賴的信息具有很大的時間和空間關聯性,因此有些信息的處理需要非常及時。
總結
以上是生活随笔為你收集整理的人工智能在自动驾驶深度学习中的应用的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: SRAM和DRAM存储原理
- 下一篇: 梳理百年深度学习发展史-七月在线机器学习