日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

用pandas填充时间序列缺失值

發布時間:2024/1/23 编程问答 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 用pandas填充时间序列缺失值 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

用pandas填充時間序列缺失值

例如,下有時間缺失值:

Date_time current_demand Temp_Mean humidity_Mean 0 2018-05-01 00:00 15951.0 300.904267 49.600000 1 2018-05-01 00:15 16075.0 300.904267 49.600000 2 2018-05-01 00:30 15977.0 300.904267 49.600000 3 2018-05-01 00:45 15945.0 300.837600 50.333333 4 2018-05-01 01:00 15868.0 298.889333 59.133333 5 2018-05-01 01:15 15583.0 298.889333 59.133333 6 2018-05-01 01:30 15470.0 298.756000 59.800000 7 2018-05-01 01:45 15301.0 298.756000 59.800000 8 2018-05-01 02:15 14946.0 298.756000 59.800000 9 2018-05-01 02:30 14736.0 298.756000 59.800000 10 2018-05-01 02:45 14630.0 298.502333 59.000000 11 2018-05-01 03:15 14350.0 298.502333 59.000000

csv文件(修改):

Date_time,current_demand,Temp_Mean,humidity_Mean 2018-05-01 00:00,15951.0,300.904267,49.600000 2018-05-01 00:15,16075.0,300.904267,49.600000 2018-05-01 00:30,15977.0,300.904267,49.600000 2018-05-01 00:45,15945.0,300.837600,50.333333 2018-05-01 01:00,15868.0,298.889333,59.133333 2018-05-01 01:15,15583.0,298.889333,59.133333 2018-05-01 01:30,15470.0,298.756000,59.800000 2018-05-01 01:45,15301.0,298.756000,59.800000 2018-05-01 02:15,14946.0,298.756000,59.800000 2018-05-01 02:30,14736.0,298.756000,59.800000 2018-05-01 02:45,14630.0,298.502333,59.000000 2018-05-01 03:15,14350.0,298.502333,59.000000 import pandas as pd import numpy as npdf = pd.read_csv(r'submission.csv',sep = ',') df.shapedf['Date_time'] = pd.to_datetime(df['Date_time']) grouper = pd.Grouper(key='Date_time', freq='15T') res = df.groupby(grouper).first().ffill().reset_index() res

結果如下:

轉載于:https://cloud.tencent.com/developer/ask/127509

總結

以上是生活随笔為你收集整理的用pandas填充时间序列缺失值的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。