日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Elasticsearch对垒8大竞品技术

發(fā)布時間:2024/1/23 编程问答 46 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Elasticsearch对垒8大竞品技术 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

Elasticsearch當前熱度排名很高

?

青出于藍,而勝于藍。

?

入行Elastic-Stack技術(shù)棧很久很久,為了免于知識匱乏眼光局限,有必要到外面的世界看看,豐富自己的世界觀。本篇內(nèi)容從Elastic的競爭產(chǎn)品角度分析探討。

?

  • 哪些應用場景下使用Elasticsearch最佳?

  • 哪些應用場景下不使用Elasticsearch最好?

?

本文僅代表個人的觀點,不代表社區(qū)技術(shù)陣營觀點,無意口水之爭,限于本人的經(jīng)驗知識有限,可能與讀者觀點認知不一致。

?

競爭產(chǎn)品

?

Elasticseach從做搜索引擎開始,到現(xiàn)在主攻大數(shù)據(jù)分析領(lǐng)域,逐步進化成了一個全能型的數(shù)據(jù)產(chǎn)品,在Elasticsearch諸多優(yōu)秀的功能中,與很多數(shù)據(jù)產(chǎn)品有越來越多的交叉競爭,有的功能很有特色,有的功能只是附帶,了解這些產(chǎn)品特點有助于更好的應用于業(yè)務需求。

?

圖片:Elasticsearch競爭圖譜示意圖

?

1、Lucene

?

?

Lucene是一個搜索的核心庫,Elastic也是在Lucene基礎(chǔ)之上構(gòu)建,它們之間的競爭關(guān)系是由Lucene本身決定的。

?

在互聯(lián)網(wǎng)2.0時代,考驗各互聯(lián)網(wǎng)公司最簡單的技術(shù)要求,就是看他們的搜索做的怎么樣,那時大家的做法幾乎一樣,都基于Lucene核心庫構(gòu)建一套搜索引擎,剩下的就看各公司的開發(fā)者們的水平。筆者有幸在2012年之前,基于Lucene做過垂直行業(yè)的搜索引擎,遇到很多問題有必要說一下:

?

  • 項目基于Lucene包裝,業(yè)務代碼與核心庫一起構(gòu)建發(fā)布,代碼耦合度很高,每次有數(shù)據(jù)字段變更,都需要重新編譯打包發(fā)布,這個過程非常的繁瑣,且相當危險。

  • 程序重新發(fā)布,需要關(guān)閉原有的程序,涉及到進程切換問題。

  • 索引數(shù)據(jù)定期全量重新生成,也涉及到新舊索引切換,索引實時刷新等問題,都需要設(shè)計一套復雜的程序機制保障

  • 每個獨立業(yè)務線需求,都需要單獨構(gòu)建一個Lucene索引進程,業(yè)務線多了之后,管理是個麻煩的事情

  • 當單個Lucene索引數(shù)據(jù)超過單實例限制之后,需要做分布式,這個原有Lucene是沒有辦法的,所以常規(guī)的做法也是按照某特定分類,拆分成多個索引進程,客戶端查詢時帶上特定分類,后端根據(jù)特定分類路由到具體的索引。

  • Lucene庫本身的掌控難度,對于功力尚淺的開發(fā)工程師,需要考慮的因素實在太多了,稍微不慎,就會出現(xiàn)很大的程序問題。

?

圖示:Lucene內(nèi)部索引構(gòu)建與查詢過程

?

Elasticsearch與Lucene核心庫競爭的優(yōu)勢在于:

?

  • 完美封裝了Lucene核心庫,設(shè)計了友好的Restful-API,開發(fā)者無需過多關(guān)注底層機制,直接開箱即用。

  • 分片與副本機制,直接解決了集群下性能與高可用問題。

?

Elastic近年的快速發(fā)展,市面上已經(jīng)很少發(fā)現(xiàn)基于Lucene構(gòu)建搜索引擎的項目,幾乎清一色選擇Elasticsearch作為基礎(chǔ)數(shù)據(jù)庫服務,由于其開源特性,廣大云廠商也在此基礎(chǔ)上定制開發(fā),與自己的云平臺深度集成,但也沒有獨自發(fā)展一個分支。

?

本次的競爭中,Elasticsearch完勝。

?

2、Solr

?

?

Solr是第一個基于Lucene核心庫功能完備的搜索引擎產(chǎn)品,誕生遠早于Elasticsearch,早期在全文搜索領(lǐng)域,Solr有非常大的優(yōu)勢,幾乎完全壓倒Elastic,在近幾年大數(shù)據(jù)發(fā)展時代,Elastic由于其分布式特性,滿足了很多大數(shù)據(jù)的處理需求,特別是后面ELK這個概念的流行,幾乎完全忘記了Solr的存在,雖然也推出了Solr-Coud分布式產(chǎn)品,但已經(jīng)基本無優(yōu)勢。

?

接觸過幾個數(shù)據(jù)類公司,全文搜索都基于Solr構(gòu)建,且是單節(jié)點模式,偶然出現(xiàn)一些問題,找咨詢顧問排查問題,人員難找,后面都遷移到Elasticsearch之上。

?

現(xiàn)在市面上幾乎大大小小公司都在使用Elasticsearch,除了老舊系統(tǒng)有的基于Solr的,新系統(tǒng)項目應該全部是Elasticsearch。

?

個人認為有以下幾個原因:

?

  • ES比Solr更加友好簡潔,門檻更低。

  • ES比Solr產(chǎn)品功能特點更加豐富,分片機制,數(shù)據(jù)分析能力。

  • ES生態(tài)發(fā)展,Elastic-stack整個技術(shù)棧相當全,與各種數(shù)據(jù)系統(tǒng)都很容易集成。

  • ES社區(qū)發(fā)展更加活躍,Solr幾乎沒有專門的技術(shù)分析大會。

?

圖示:Solr產(chǎn)品功能模塊內(nèi)部架構(gòu)圖

?

本次競爭中,Elasticsearch完勝。

?

3、RDBMS

?

?

關(guān)系型數(shù)據(jù)庫與Elasticsarch相比主要優(yōu)點是事務隔離機制無可替代,但其局限性很明顯,如下:

?

  • 關(guān)系型數(shù)據(jù)庫查詢性能,數(shù)據(jù)量超過百萬級千萬級之后下降厲害,本質(zhì)是索引的算法效率不行,B+樹算法不如倒排索引算法高效。

  • 關(guān)系型數(shù)據(jù)庫索引最左原則限制,查詢條件字段不能任意組合,否則索引失效,相反Elasticserach可以任意組合,此場景在數(shù)據(jù)表關(guān)聯(lián)查詢時特別明顯,Elasticsearch可以采用大寬表解決,而關(guān)系型數(shù)據(jù)庫不能。

  • 關(guān)系型數(shù)據(jù)庫分庫分表之后多條件查詢,難于實現(xiàn),Elasticsearch天然分布式設(shè)計,多個索引多個分片皆可聯(lián)合查詢。

  • 關(guān)系型數(shù)據(jù)庫聚合性能低下,數(shù)據(jù)量稍微多點,查詢列基數(shù)多一點性能下降很快,Elasticsearch在聚合上采用的是列式存儲,效率極高。

  • 關(guān)系型數(shù)據(jù)庫側(cè)重均衡性,Elasticsearch側(cè)重專一查詢速度。

    ?

若數(shù)據(jù)無需嚴格事務機制隔離,個人認為都可以采用Elasticsearch替代。若數(shù)據(jù)既要事務隔離,也要查詢性能,可以采用DB與ES混合實現(xiàn),詳細見筆者的博客文章《DB與ES混合應用之數(shù)據(jù)實時同步》

?

圖示:RDBMS與ES各自優(yōu)勢示意圖

?

4、OpenTSDB

?

?

OpenTSDB內(nèi)部基于HBase實現(xiàn),屬于時間序列數(shù)據(jù)庫,主要針對具有時間特性和需求的數(shù)據(jù),進行過數(shù)據(jù)結(jié)構(gòu)的優(yōu)化和處理,從而適合存儲具有時間特性的數(shù)據(jù),如監(jiān)控數(shù)據(jù)、溫度變化數(shù)據(jù)等,小米公司開源監(jiān)控體系open-falcon的就是基于OpenTSDB實現(xiàn)。

?

圖示:OpenTSDB時間序列數(shù)據(jù)庫內(nèi)部實現(xiàn)

?

Elastic產(chǎn)品本身無意時間序列這個領(lǐng)域,隨著ELK的流行,很多公司采用ELK來構(gòu)建監(jiān)控體系,雖然在數(shù)值類型上不像時間序列數(shù)據(jù)庫做過特別處理,但由于其便利的使用,以及生態(tài)技術(shù)棧的優(yōu)勢,我們也接受了這樣的事實。

?

Elasticsearch構(gòu)建時間序列很簡單,性能也相當不錯:

?

  • 索引創(chuàng)建規(guī)則,可以按年、按月、按周、按星期、按天、按小時等都創(chuàng)建索引,非常便利。

  • 數(shù)據(jù)填充方面,定制一個時間字段做區(qū)分排序,其余的字段無需。

  • 數(shù)據(jù)查詢方面,除了按實際序列查詢外,還可以有更多的搜索條件。

?

除非對于時間序列數(shù)據(jù)有非??量痰谋O(jiān)控需求,否則選擇Elasticsearch會更加合適一些。

?

5、HBase

?

?

HBase是列式數(shù)據(jù)庫的代表,其內(nèi)部有幾個致命設(shè)計大大限制了它的應用范圍:

?

  • 訪問HBase數(shù)據(jù)只能基于Rowkey,Rowkey設(shè)計的好壞直接決定了HBase使用優(yōu)劣。

  • 本身不支持二級索引,若要實現(xiàn),則需要引入第三方。

?

關(guān)于其各種技術(shù)原理就不多說了,說說它的一些使用情況。

?

公司所屬物流速運行業(yè),一個與車輛有關(guān)的項目,記錄所有車輛行駛軌跡,車載設(shè)備會定時上報車子的軌跡信息,后端數(shù)據(jù)存儲基于HBase,數(shù)據(jù)量在幾十TB級以上,由于業(yè)務端需要依據(jù)車輛軌跡信息計算它的公里油耗以及相關(guān)成本,所以要按查詢條件批量查詢數(shù)據(jù),查詢條件有一些非rowkey的字段,如時間范圍,車票號,城市編號等,這幾乎無法實現(xiàn),原來暴力的做過,性能問題堪憂。此項目的問題首先也在于rowkey難設(shè)計滿足查詢條件的需求,其次是二級索引問題,查詢的條件很多。

?

如果用列式數(shù)據(jù)庫僅限于Rowkey訪問場景,其實采用Elastic也可以,只要設(shè)計好 _id,與HBase可以達到相同的效果。

?

如果用列式數(shù)據(jù)庫查詢還需要引入三方組件,那還不如直接在Elasticsearch上構(gòu)建更直接。

?

除非對使用列式數(shù)據(jù)庫有非常苛刻的要求,否則Elasticsearch更具備通用性,業(yè)務需求場景適用性更多。

?

圖示:列式數(shù)據(jù)庫內(nèi)部數(shù)據(jù)結(jié)構(gòu)示意圖

?

6、MongoDB

?

?

MongoDB是文檔型數(shù)據(jù)庫的代表,數(shù)據(jù)模型基于Bson,而Elasticsearch的文檔數(shù)據(jù)模型是Json,Bson本質(zhì)是Json的一種擴展,可以相互直接轉(zhuǎn)換,且它們的數(shù)據(jù)模式都是可以自由擴展的,基本無限制。MongoDB本身定位與關(guān)系型數(shù)據(jù)庫競爭,支持嚴格的事務隔離機制,在這個層面實際上與Elasticsearch產(chǎn)品定位不一樣,但實際工作中,幾乎沒有公司會將核心業(yè)務數(shù)據(jù)放在MongoDB上,關(guān)系型數(shù)據(jù)庫依然是第一選擇。若超出這個定位,則Elasticsearh相比MongoDB有如下優(yōu)點:

?

  • 文檔查詢性能,倒排索引/KDB-Tree比B+Tree厲害。

  • 數(shù)據(jù)的聚合分析能力,ES本身提供了列式數(shù)據(jù)doc_value,比Mongo的行式要快不少。

  • 集群分片副本機制,ES架構(gòu)設(shè)計更勝一籌。

  • ES特色功能比MongoDB提供的更多,適用的場景范圍更寬泛。

  • 文檔數(shù)據(jù)樣例,ObjectId由MongoDB內(nèi)置自動生成。

?

?

?

公司剛好有個項目,原來數(shù)據(jù)層基于MongoDB設(shè)計構(gòu)建的,查詢問題不少 ,后面成功遷移到Elasticsearch平臺上,服務器數(shù)據(jù)量從15臺降低到3臺,查詢性能還大幅度提升十倍,詳細可閱讀筆者另一篇文章《從MongoDB遷移到ES后,我們減少了80%的服務器》

?

拋開數(shù)據(jù)事務隔離,Elasticsearch可以完全替代MongoDB。

?

7、ClickHouse

?

?

ClickHouse是一款MPP查詢分析型數(shù)據(jù)庫,近幾年活躍度很高,很多頭部公司都引入其中。我們?yōu)槭裁匆肽?#xff0c;原因可能跟其他頭部公司不太一樣,如下:

?

  • 筆者長期從事大數(shù)據(jù)工作,經(jīng)常會碰到數(shù)據(jù)聚合的實時查詢需求,早期我們會選擇一款關(guān)系型數(shù)據(jù)庫來做做聚合查詢,如MySQL/PostgreSQL,稍微不注意就很容易出現(xiàn)性能瓶頸。

  • 后面引入Elasticsearch產(chǎn)品,其基于列式設(shè)計以及分片架構(gòu),性能各方面確實明顯優(yōu)于單節(jié)點的關(guān)系型數(shù)據(jù)庫。

  • Elasticsearch局限性也很明顯,一是數(shù)據(jù)量超過千萬或者億級時,若聚合的列數(shù)太多,性能也到達瓶頸;二是不支持深度二次聚合,導致一些復雜的聚合需求,需要人工編寫代碼在外部實現(xiàn),這又增加很多開發(fā)工作量。

  • 后面引入了ClickHouse,替代Elasticserach做深度聚合需求,性能表現(xiàn)不錯,在數(shù)據(jù)量千萬級億級表現(xiàn)很好,且資源消耗相比之前降低不少,同樣的服務器資源可以承擔更多的業(yè)務需求。

?

ClickHouse與Elasticsearch一樣,都采用列式存儲結(jié)構(gòu),都支持副本分片,不同的是ClickHouse底層有一些獨特的實現(xiàn),如下:

?

  • MergeTree 合并樹表引擎,提供了數(shù)據(jù)分區(qū)、一級索引、二級索引。

  • Vector Engine 向量引擎,數(shù)據(jù)不僅僅按列存儲,同時還按向量(列的一部分)進行處理,這樣可以更加高效地使用CPU。

?

圖示:ClickHouse在大數(shù)據(jù)平臺中的位置

?

8、Druid

?

?

Durid是一個大數(shù)據(jù)MPP查詢型數(shù)據(jù)產(chǎn)品,核心功能Rollup,所有的需要Rollup原始數(shù)據(jù)必須帶有時間序列字段。Elasticsearch在6.3.X版本之后推出了此功能,此時兩者產(chǎn)品形成競爭關(guān)系,誰高誰下,看應用場景需求。

?

Druid樣本數(shù)據(jù),必須帶有time時間字段。

?

?

筆者之前負責過公司所有Elasticsearch技術(shù)棧相關(guān)數(shù)據(jù)項目,當時也有碰到一些實時聚合查詢返回部分數(shù)據(jù)的需求,但我們的需求不太一樣,索引數(shù)據(jù)屬于離線型更新,每天都會全部刪除并重新創(chuàng)建索引插入數(shù)據(jù),此時使用Elastic的版本是6.8.X,僅支持離線型數(shù)據(jù)Rollup,所以此功能沒用上,Elastic在7.2.X版本之后才推出實時Rollup功能。

?

  • Druid更加專注,產(chǎn)品設(shè)計圍繞Rollup展開,Elastic只是附帶;

  • Druid支持多種外接數(shù)據(jù),直接可以對接Kafka數(shù)據(jù)流,也可以直接對接平臺自身內(nèi)部數(shù)據(jù);而Elastic僅支持內(nèi)部索引數(shù)據(jù),外部數(shù)據(jù)需要借助三方工具導入到索引里;

  • Druid在數(shù)據(jù)Rollup之后,會丟棄原始數(shù)據(jù);Elastic在原有索引基礎(chǔ)之后,生成新的Rollup之后的索引數(shù)據(jù);

  • Druid與Elastic的技術(shù)架構(gòu)非常類似,都支持節(jié)點職責分離,都支持橫向擴展;

  • Druid與Elastic在數(shù)據(jù)模型上都支持倒排索引,基于此的搜索與過濾。

?

圖示:Druid產(chǎn)品技術(shù)架構(gòu)體系示意圖

?

關(guān)于Rollup這個大數(shù)據(jù)分析領(lǐng)域,若有大規(guī)模的Rollup的場景需求,個人更傾向于Druid。

?

結(jié)語

?

總結(jié):

  • Elasticsearch產(chǎn)品功能全面,適用范圍廣,性能也不錯,綜合應用是首選。

  • Elasticsearch在搜索查詢領(lǐng)域,幾乎完勝所有競爭產(chǎn)品,在筆者的技術(shù)??磥?#xff0c;關(guān)系型數(shù)據(jù)庫解決數(shù)據(jù)事務問題,Elasticsearch幾乎解決一切搜索查詢問題。

  • Elasticsearch在數(shù)據(jù)分析領(lǐng)域,產(chǎn)品能力偏弱一些,簡單通用的場景需求可以大規(guī)模使用,但在特定業(yè)務場景領(lǐng)域,還是要選擇更加專業(yè)的數(shù)據(jù)產(chǎn)品,如前文中提到的復雜聚合、大規(guī)模Rollup、大規(guī)模的Key-Value。

  • Elasticsearch越來越不像一個搜索引擎,更像是一個全能型的數(shù)據(jù)產(chǎn)品,幾乎所有行業(yè)都在使用,業(yè)界非常受歡迎。

  • Elasticsearch用得好,下班下得早。

總結(jié)

以上是生活随笔為你收集整理的Elasticsearch对垒8大竞品技术的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。