日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Prescribed Performance Control 具有预设性能的控制

發布時間:2024/1/18 编程问答 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Prescribed Performance Control 具有预设性能的控制 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

最近控制理論興起了一種具有預設性能的控制方法,稱之為prescribed performance control (PPC)。近些年來在機械系統的控制,比如無人艇(USV),水下潛器(UUV)和無人機(UAV)等領域得到了一些研究。其主要思路如下

A. Prescribed Performance Function

Definition: A smooth function ρ : R + → R + \rho: \mathfrak{R_+ \to R_+} ρ:R+?R+? will be called a performance function if:\

  • ρ ( t ) \rho (t) ρ(t) is positive and decreasing
  • l i m t → ∞ ρ ( t ) = ρ ∞ > 0 lim_{t \to \infty} \rho(t) =\rho_\infty >0 limt?ρ(t)=ρ?>0
  • We can choose the ρ ( t ) \rho(t) ρ(t) as:

    ρ ( t ) = ( ρ 0 ? ρ ∞ ) e ? α t + ρ ∞ \rho(t)=(\rho_0-\rho_\infty)e^{-\alpha t}+\rho_\infty ρ(t)=(ρ0??ρ?)e?αt+ρ?

    Where ρ 0 , ρ ∞ \rho_0,\rho_\infty ρ0?,ρ? are both positive constants.
    If we want to achieve the prescribed transient and steady state behavioral bounds on the tracking errors e i ( t ) = x i ( t ) ? x d i ( t ) e_i(t)=x_i(t)-x_{d_i}(t) ei?(t)=xi?(t)?xdi??(t), then guaranteeing the objective is equivalent to:

    ? δ i ρ i ( t ) < e i ( t ) < ρ i ( t ) i f e i ( 0 ) > 0 -\delta_i\rho_i(t)<e_i(t)<\rho_i(t)\quad\quad if \quad e_i(0)>0 ?δi?ρi?(t)<ei?(t)<ρi?(t)ifei?(0)>0
    ? ρ i ( t ) < e i ( t ) < δ i ρ i ( t ) i f e i ( 0 ) < 0 -\rho_i(t)<e_i(t)<\delta_i\rho_i(t)\quad\quad if \quad e_i(0)<0 ?ρi?(t)<ei?(t)<δi?ρi?(t)ifei?(0)<0

    for all t ≥ 0 t\geq 0 t0 , where 0 ≤ δ i ≤ 1 0\leq \delta_i\leq 1 0δi?1.
    Then provided that 0 < e i ( 0 ) < ρ i ( 0 ) 0<e_i(0)< \rho_i(0) 0<ei?(0)<ρi?(0), the constant represents the maximum allowable size of the tracking error at the steady state. Furthermore, the decreasing rate of ρ i ( t ) \rho_i(t) ρi?(t) introduces a lower bound on the required speed of convergence of e i ( t ) e_i(t) ei?(t), while the maximum overshoot is prescribed less than δ i ρ i ( t ) \delta_i\rho_i(t) δi?ρi?(t) which may even become zero by setting δ i = 0 \delta_i=0 δi?=0. Thus, the appropriate selection of the performance functions ρ i ( t ) \rho_i(t) ρi?(t), as well as the design constants, imposes behavioral bounds on the system output trajectories.

    B. Error Transformation

    The aforementioned statements impose constraints on the errors equivalently. Then we propose an error transformation capable of transforming the original nonlinear system, with the constrained tracking error behavior, into an equivalent unconstrained one.
    Define:
    ε i ( t ) = T i ( e i ( t ) ρ i ( t ) ) \varepsilon_i(t)=T_i\Big(\frac{e_i(t)}{\rho_i(t)}\Big) εi?(t)=Ti?(ρi?(t)ei?(t)?)
    Where ε i ( t ) \varepsilon_i(t) εi?(t) is the transformed error and T i ( ? ) T_i(\cdot) Ti?(?) is a smooth strictly increasing function which define a mapping:
    KaTeX parse error: Undefined control sequence: \mbox at position 66: …ty,\infty), & \?m?b?o?x?{if }e_i(0)\geq…
    In general ,the T i ( ? ) T_i(\cdot) Ti?(?) can be chose as
    T i ( e i ( t ) ρ i ( t ) ) = ln ? ( δ i + e i ( t ) / ρ i ( t ) 1 ? e i ( t ) / ρ i ( t ) ) if e i ( 0 ) ≥ 0 T_i(\frac{e_i(t)}{\rho_i(t)})=\ln \Big(\frac{\delta_i+e_i(t)/\rho_i(t)}{1-e_i(t)/\rho_i(t)}\Big) \quad \quad \text{if} \quad e_i(0)\geq 0 Ti?(ρi?(t)ei?(t)?)=ln(1?ei?(t)/ρi?(t)δi?+ei?(t)/ρi?(t)?)ifei?(0)0
    T i ( e i ( t ) ρ i ( t ) ) = ln ? ( 1 + e i ( t ) / ρ i ( t ) δ i ? e i ( t ) / ρ i ( t ) ) if e i ( 0 ) ≤ 0 T_i(\frac{e_i(t)}{\rho_i(t)})=\ln \Big(\frac{1+e_i(t)/\rho_i(t)}{\delta_i-e_i(t)/\rho_i(t)}\Big) \quad \quad \text{if} \quad e_i(0)\leq 0 Ti?(ρi?(t)ei?(t)?)=ln(δi??ei?(t)/ρi?(t)1+ei?(t)/ρi?(t)?)ifei?(0)0
    T i ? 1 ( ε i ) = S ( ε i ) = { e ε i ? δ i e ? ε i e ε i + e ? ε i , if e i ( 0 ) ≥ 0 δ i e ε i ? e ? ε i e ε i + e ? ε i , if e i ( 0 ) ≤ 0 T_i^{-1}(\varepsilon_i)=S(\varepsilon_i)=\begin{cases} \frac{e^{\varepsilon_i}-\delta_i e^{-\varepsilon_i}}{e^{\varepsilon_i}+e^{-\varepsilon_i}}, & \text{if} \quad e_i(0)\geq 0\\ \frac{\delta_i e^{\varepsilon_i}-e^{-\varepsilon_i}}{e^{\varepsilon_i}+e^{-\varepsilon_i}}, & \text{if} \quad e_i(0)\leq 0\\ \end{cases} Ti?1?(εi?)=S(εi?)={eεi?+e?εi?eεi??δi?e?εi??eεi?+e?εi?δi?eεi??e?εi???ifei?(0)0ifei?(0)0?

    At the beginning, ε ( 0 ) \varepsilon(0) ε(0) is well defined, and if ∣ e ( 0 ) ∣ < ρ ( 0 ) |e(0)|<\rho(0) e(0)<ρ(0), then ε ( t ) \varepsilon(t) ε(t) can be well defined for t ≥ 0 t\geq 0 t0 with appropriate control law. And hence, the error transient and steady state can be guaranteed within the given function ρ ( t ) \rho(t) ρ(t)

    Reference

    Bechlioulis, C. P., & Rovithakis, G. A. (2008). Robust adaptive control of feedback linearizable mimo nonlinear systems with prescribed performance. IEEE Transactions on Automatic Control, 53(9), 2090-2099.
    Jia, Z., Hu, Z., & Zhang, W. (2019). Adaptive output-feedback control with prescribed performance for trajectory tracking of underactuated surface vessels. ISA transactions, 95, 18-26.

    總結

    以上是生活随笔為你收集整理的Prescribed Performance Control 具有预设性能的控制的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。