Hive分析窗口函数系列文章
分析窗口函數(shù)應(yīng)用場(chǎng)景:
(1)用于分區(qū)排序
(2)動(dòng)態(tài)Group By
(3)Top N
(4)累計(jì)計(jì)算
(5)層次查詢
?
Hive分析窗口函數(shù)(一) SUM,AVG,MIN,MAX
Hive中提供了越來(lái)越多的分析函數(shù),用于完成負(fù)責(zé)的統(tǒng)計(jì)分析。抽時(shí)間將所有的分析窗口函數(shù)理一遍,將陸續(xù)發(fā)布。
今天先看幾個(gè)基礎(chǔ)的,SUM、AVG、MIN、MAX。
用于實(shí)現(xiàn)分組內(nèi)所有和連續(xù)累積的統(tǒng)計(jì)。
數(shù)據(jù)準(zhǔn)備:
?CREATE EXTERNAL TABLE lxw1234 (
cookieid string,
createtime string, --day
pv INT
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
stored as textfile location '/tmp/lxw11/';
DESC lxw1234;
cookieid STRING
createtime STRING
pv INT
hive> select * from lxw1234;
OK
cookie1 2015-04-10 1
cookie1 2015-04-11 5
cookie1 2015-04-12 7
cookie1 2015-04-13 3
cookie1 2015-04-14 2
cookie1 2015-04-15 4
cookie1 2015-04-16 4
SUM — 注意,結(jié)果和ORDER BY相關(guān),默認(rèn)為升序
?SELECT cookieid,
createtime,
pv,
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默認(rèn)為從起點(diǎn)到當(dāng)前行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --從起點(diǎn)到當(dāng)前行,結(jié)果同pv1
SUM(pv) OVER(PARTITION BY cookieid) AS pv3, --分組內(nèi)所有行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --當(dāng)前行+往前3行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --當(dāng)前行+往前3行+往后1行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---當(dāng)前行+往后所有行
FROM lxw1234;
cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
-----------------------------------------------------------------------------
cookie1 2015-04-10 1 1 1 26 1 6 26
cookie1 2015-04-11 5 6 6 26 6 13 25
cookie1 2015-04-12 7 13 13 26 13 16 20
cookie1 2015-04-13 3 16 16 26 16 18 13
cookie1 2015-04-14 2 18 18 26 17 21 10
cookie1 2015-04-15 4 22 22 26 16 20 8
cookie1 2015-04-16 4 26 26 26 13 13 4
pv1: 分組內(nèi)從起點(diǎn)到當(dāng)前行的pv累積,如,11號(hào)的pv1=10號(hào)的pv+11號(hào)的pv, 12號(hào)=10號(hào)+11號(hào)+12號(hào)
pv2: 同pv1
pv3: 分組內(nèi)(cookie1)所有的pv累加
pv4: 分組內(nèi)當(dāng)前行+往前3行,如,11號(hào)=10號(hào)+11號(hào), 12號(hào)=10號(hào)+11號(hào)+12號(hào), 13號(hào)=10號(hào)+11號(hào)+12號(hào)+13號(hào), 14號(hào)=11號(hào)+12號(hào)+13號(hào)+14號(hào)
pv5: 分組內(nèi)當(dāng)前行+往前3行+往后1行,如,14號(hào)=11號(hào)+12號(hào)+13號(hào)+14號(hào)+15號(hào)=5+7+3+2+4=21
pv6: 分組內(nèi)當(dāng)前行+往后所有行,如,13號(hào)=13號(hào)+14號(hào)+15號(hào)+16號(hào)=3+2+4+4=13,14號(hào)=14號(hào)+15號(hào)+16號(hào)=2+4+4=10
?
如果不指定ROWS BETWEEN,默認(rèn)為從起點(diǎn)到當(dāng)前行;
如果不指定ORDER BY,則將分組內(nèi)所有值累加;
關(guān)鍵是理解ROWS BETWEEN含義,也叫做WINDOW子句:
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:當(dāng)前行
UNBOUNDED:起點(diǎn),UNBOUNDED PRECEDING 表示從前面的起點(diǎn), UNBOUNDED FOLLOWING:表示到后面的終點(diǎn)
–其他AVG,MIN,MAX,和SUM用法一樣。
?--AVG
SELECT cookieid,
createtime,
pv,
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默認(rèn)為從起點(diǎn)到當(dāng)前行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --從起點(diǎn)到當(dāng)前行,結(jié)果同pv1
AVG(pv) OVER(PARTITION BY cookieid) AS pv3, --分組內(nèi)所有行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --當(dāng)前行+往前3行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --當(dāng)前行+往前3行+往后1行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---當(dāng)前行+往后所有行
FROM lxw1234;
cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
-----------------------------------------------------------------------------
cookie1 2015-04-10 1 1.0 1.0 3.7142857142857144 1.0 3.0 3.7142857142857144
cookie1 2015-04-11 5 3.0 3.0 3.7142857142857144 3.0 4.333333333333333 4.166666666666667
cookie1 2015-04-12 7 4.333333333333333 4.333333333333333 3.7142857142857144 4.333333333333333 4.0 4.0
cookie1 2015-04-13 3 4.0 4.0 3.7142857142857144 4.0 3.6 3.25
cookie1 2015-04-14 2 3.6 3.6 3.7142857142857144 4.25 4.2 3.3333333333333335
cookie1 2015-04-15 4 3.6666666666666665 3.6666666666666665 3.7142857142857144 4.0 4.0 4.0
cookie1 2015-04-16 4 3.7142857142857144 3.7142857142857144 3.7142857142857144 3.25 3.25 4.0
--MIN
SELECT cookieid,
createtime,
pv,
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默認(rèn)為從起點(diǎn)到當(dāng)前行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --從起點(diǎn)到當(dāng)前行,結(jié)果同pv1
MIN(pv) OVER(PARTITION BY cookieid) AS pv3, --分組內(nèi)所有行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --當(dāng)前行+往前3行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --當(dāng)前行+往前3行+往后1行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---當(dāng)前行+往后所有行
FROM lxw1234;
cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
-----------------------------------------------------------------------------
cookie1 2015-04-10 1 1 1 1 1 1 1
cookie1 2015-04-11 5 1 1 1 1 1 2
cookie1 2015-04-12 7 1 1 1 1 1 2
cookie1 2015-04-13 3 1 1 1 1 1 2
cookie1 2015-04-14 2 1 1 1 2 2 2
cookie1 2015-04-15 4 1 1 1 2 2 4
cookie1 2015-04-16 4 1 1 1 2 2 4
--MAX
SELECT cookieid,
createtime,
pv,
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默認(rèn)為從起點(diǎn)到當(dāng)前行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --從起點(diǎn)到當(dāng)前行,結(jié)果同pv1
MAX(pv) OVER(PARTITION BY cookieid) AS pv3, --分組內(nèi)所有行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --當(dāng)前行+往前3行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --當(dāng)前行+往前3行+往后1行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---當(dāng)前行+往后所有行
FROM lxw1234;
cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
-----------------------------------------------------------------------------
cookie1 2015-04-10 1 1 1 7 1 5 7
cookie1 2015-04-11 5 5 5 7 5 7 7
cookie1 2015-04-12 7 7 7 7 7 7 7
cookie1 2015-04-13 3 7 7 7 7 7 4
cookie1 2015-04-14 2 7 7 7 7 7 4
cookie1 2015-04-15 4 7 7 7 7 7 4
cookie1 2015-04-16 4 7 7 7 4 4 4
?
Hive分析窗口函數(shù)(二) NTILE,ROW_NUMBER,RANK,DENSE_RANK
本文中介紹前幾個(gè)序列函數(shù),NTILE,ROW_NUMBER,RANK,DENSE_RANK,下面會(huì)一一解釋各自的用途。
注意: 序列函數(shù)不支持WINDOW子句。(什么是WINDOW子句,點(diǎn)此查看前面的文章)
數(shù)據(jù)準(zhǔn)備:
?CREATE EXTERNAL TABLE lxw1234 (
cookieid string,
createtime string, --day
pv INT
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
stored as textfile location '/tmp/lxw11/';
DESC lxw1234;
cookieid STRING
createtime STRING
pv INT
hive> select * from lxw1234;
OK
cookie1 2015-04-10 1
cookie1 2015-04-11 5
cookie1 2015-04-12 7
cookie1 2015-04-13 3
cookie1 2015-04-14 2
cookie1 2015-04-15 4
cookie1 2015-04-16 4
cookie2 2015-04-10 2
cookie2 2015-04-11 3
cookie2 2015-04-12 5
cookie2 2015-04-13 6
cookie2 2015-04-14 3
cookie2 2015-04-15 9
cookie2 2015-04-16 7
?
NTILE
NTILE(n),用于將分組數(shù)據(jù)按照順序切分成n片,返回當(dāng)前切片值
NTILE不支持ROWS BETWEEN,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)
如果切片不均勻,默認(rèn)增加第一個(gè)切片的分布
SELECT
cookieid,
createtime,
pv,
NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn1, --分組內(nèi)將數(shù)據(jù)分成2片
NTILE(3) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn2, --分組內(nèi)將數(shù)據(jù)分成3片
NTILE(4) OVER(ORDER BY createtime) AS rn3 --將所有數(shù)據(jù)分成4片
FROM lxw1234
ORDER BY cookieid,createtime;
cookieid day pv rn1 rn2 rn3
-------------------------------------------------
cookie1 2015-04-10 1 1 1 1
cookie1 2015-04-11 5 1 1 1
cookie1 2015-04-12 7 1 1 2
cookie1 2015-04-13 3 1 2 2
cookie1 2015-04-14 2 2 2 3
cookie1 2015-04-15 4 2 3 3
cookie1 2015-04-16 4 2 3 4
cookie2 2015-04-10 2 1 1 1
cookie2 2015-04-11 3 1 1 1
cookie2 2015-04-12 5 1 1 2
cookie2 2015-04-13 6 1 2 2
cookie2 2015-04-14 3 2 2 3
cookie2 2015-04-15 9 2 3 4
cookie2 2015-04-16 7 2 3 4
?
–比如,統(tǒng)計(jì)一個(gè)cookie,pv數(shù)最多的前1/3的天
?SELECT
cookieid,
createtime,
pv,
NTILE(3) OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn
FROM lxw1234;
--rn = 1 的記錄,就是我們想要的結(jié)果
cookieid day pv rn
----------------------------------
cookie1 2015-04-12 7 1
cookie1 2015-04-11 5 1
cookie1 2015-04-15 4 1
cookie1 2015-04-16 4 2
cookie1 2015-04-13 3 2
cookie1 2015-04-14 2 3
cookie1 2015-04-10 1 3
cookie2 2015-04-15 9 1
cookie2 2015-04-16 7 1
cookie2 2015-04-13 6 1
cookie2 2015-04-12 5 2
cookie2 2015-04-14 3 2
cookie2 2015-04-11 3 3
cookie2 2015-04-10 2 3
?
ROW_NUMBER
ROW_NUMBER() –從1開(kāi)始,按照順序,生成分組內(nèi)記錄的序列
–比如,按照pv降序排列,生成分組內(nèi)每天的pv名次
ROW_NUMBER() 的應(yīng)用場(chǎng)景非常多,再比如,獲取分組內(nèi)排序第一的記錄;獲取一個(gè)session中的第一條refer等。
SELECT
cookieid,
createtime,
pv,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn
FROM lxw1234;
cookieid day pv rn
-------------------------------------------
cookie1 2015-04-12 7 1
cookie1 2015-04-11 5 2
cookie1 2015-04-15 4 3
cookie1 2015-04-16 4 4
cookie1 2015-04-13 3 5
cookie1 2015-04-14 2 6
cookie1 2015-04-10 1 7
cookie2 2015-04-15 9 1
cookie2 2015-04-16 7 2
cookie2 2015-04-13 6 3
cookie2 2015-04-12 5 4
cookie2 2015-04-14 3 5
cookie2 2015-04-11 3 6
cookie2 2015-04-10 2 7
?
RANK 和 DENSE_RANK
—RANK() 生成數(shù)據(jù)項(xiàng)在分組中的排名,排名相等會(huì)在名次中留下空位
—DENSE_RANK() 生成數(shù)據(jù)項(xiàng)在分組中的排名,排名相等會(huì)在名次中不會(huì)留下空位
SELECT
cookieid,
createtime,
pv,
RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1,
DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3
FROM lxw1234
WHERE cookieid = 'cookie1';
cookieid day pv rn1 rn2 rn3
--------------------------------------------------
cookie1 2015-04-12 7 1 1 1
cookie1 2015-04-11 5 2 2 2
cookie1 2015-04-15 4 3 3 3
cookie1 2015-04-16 4 3 3 4
cookie1 2015-04-13 3 5 4 5
cookie1 2015-04-14 2 6 5 6
cookie1 2015-04-10 1 7 6 7
rn1: 15號(hào)和16號(hào)并列第3, 13號(hào)排第5
rn2: 15號(hào)和16號(hào)并列第3, 13號(hào)排第4
rn3: 如果相等,則按記錄值排序,生成唯一的次序,如果所有記錄值都相等,或許會(huì)隨機(jī)排吧。
?
Hive分析窗口函數(shù)(三) CUME_DIST,PERCENT_RANK
這兩個(gè)序列分析函數(shù)不是很常用,這里也介紹一下。
注意: 序列函數(shù)不支持WINDOW子句。(什么是WINDOW子句,點(diǎn)此查看前面的文章)
數(shù)據(jù)準(zhǔn)備:
?CREATE EXTERNAL TABLE lxw1234 (
dept STRING,
userid string,
sal INT
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
stored as textfile location '/tmp/lxw11/';
hive> select * from lxw1234;
OK
d1 user1 1000
d1 user2 2000
d1 user3 3000
d2 user4 4000
d2 user5 5000
?
CUME_DIST
–CUME_DIST 小于等于當(dāng)前值的行數(shù)/分組內(nèi)總行數(shù)
–比如,統(tǒng)計(jì)小于等于當(dāng)前薪水的人數(shù),所占總?cè)藬?shù)的比例
SELECT
dept,
userid,
sal,
CUME_DIST() OVER(ORDER BY sal) AS rn1,
CUME_DIST() OVER(PARTITION BY dept ORDER BY sal) AS rn2
FROM lxw1234;
dept userid sal rn1 rn2
-------------------------------------------
d1 user1 1000 0.2 0.3333333333333333
d1 user2 2000 0.4 0.6666666666666666
d1 user3 3000 0.6 1.0
d2 user4 4000 0.8 0.5
d2 user5 5000 1.0 1.0
rn1: 沒(méi)有partition,所有數(shù)據(jù)均為1組,總行數(shù)為5,
第一行:小于等于1000的行數(shù)為1,因此,1/5=0.2
第三行:小于等于3000的行數(shù)為3,因此,3/5=0.6
rn2: 按照部門分組,dpet=d1的行數(shù)為3,
第二行:小于等于2000的行數(shù)為2,因此,2/3=0.6666666666666666
?
PERCENT_RANK
–PERCENT_RANK 分組內(nèi)當(dāng)前行的RANK值-1/分組內(nèi)總行數(shù)-1
應(yīng)用場(chǎng)景不了解,可能在一些特殊算法的實(shí)現(xiàn)中可以用到吧。
SELECT
dept,
userid,
sal,
PERCENT_RANK() OVER(ORDER BY sal) AS rn1, --分組內(nèi)
RANK() OVER(ORDER BY sal) AS rn11, --分組內(nèi)RANK值
SUM(1) OVER(PARTITION BY NULL) AS rn12, --分組內(nèi)總行數(shù)
PERCENT_RANK() OVER(PARTITION BY dept ORDER BY sal) AS rn2
FROM lxw1234;
dept userid sal rn1 rn11 rn12 rn2
---------------------------------------------------
d1 user1 1000 0.0 1 5 0.0
d1 user2 2000 0.25 2 5 0.5
d1 user3 3000 0.5 3 5 1.0
d2 user4 4000 0.75 4 5 0.0
d2 user5 5000 1.0 5 5 1.0
rn1: rn1 = (rn11-1) / (rn12-1)
第一行,(1-1)/(5-1)=0/4=0
第二行,(2-1)/(5-1)=1/4=0.25
第四行,(4-1)/(5-1)=3/4=0.75
rn2: 按照dept分組,
dept=d1的總行數(shù)為3
第一行,(1-1)/(3-1)=0
第三行,(3-1)/(3-1)=1
?
Hive分析窗口函數(shù)(四) LAG,LEAD,FIRST_VALUE,LAST_VALUE
繼續(xù)學(xué)習(xí)這四個(gè)分析函數(shù)。
注意: 這幾個(gè)函數(shù)不支持WINDOW子句。(什么是WINDOW子句,點(diǎn)此查看前面的文章)
數(shù)據(jù)準(zhǔn)備:
?CREATE EXTERNAL TABLE lxw1234 (
cookieid string,
createtime string, --頁(yè)面訪問(wèn)時(shí)間
url STRING --被訪問(wèn)頁(yè)面
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
stored as textfile location '/tmp/lxw11/';
hive> select * from lxw1234;
OK
cookie1 2015-04-10 10:00:02 url2
cookie1 2015-04-10 10:00:00 url1
cookie1 2015-04-10 10:03:04 1url3
cookie1 2015-04-10 10:50:05 url6
cookie1 2015-04-10 11:00:00 url7
cookie1 2015-04-10 10:10:00 url4
cookie1 2015-04-10 10:50:01 url5
cookie2 2015-04-10 10:00:02 url22
cookie2 2015-04-10 10:00:00 url11
cookie2 2015-04-10 10:03:04 1url33
cookie2 2015-04-10 10:50:05 url66
cookie2 2015-04-10 11:00:00 url77
cookie2 2015-04-10 10:10:00 url44
cookie2 2015-04-10 10:50:01 url55
?
LAG
LAG(col,n,DEFAULT) 用于統(tǒng)計(jì)窗口內(nèi)往上第n行值
第一個(gè)參數(shù)為列名,第二個(gè)參數(shù)為往上第n行(可選,默認(rèn)為1),第三個(gè)參數(shù)為默認(rèn)值(當(dāng)往上第n行為NULL時(shí)候,取默認(rèn)值,如不指定,則為NULL)
SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAG(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS last_1_time,
LAG(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS last_2_time
FROM lxw1234;
cookieid createtime url rn last_1_time last_2_time
-------------------------------------------------------------------------------------------
cookie1 2015-04-10 10:00:00 url1 1 1970-01-01 00:00:00 NULL
cookie1 2015-04-10 10:00:02 url2 2 2015-04-10 10:00:00 NULL
cookie1 2015-04-10 10:03:04 1url3 3 2015-04-10 10:00:02 2015-04-10 10:00:00
cookie1 2015-04-10 10:10:00 url4 4 2015-04-10 10:03:04 2015-04-10 10:00:02
cookie1 2015-04-10 10:50:01 url5 5 2015-04-10 10:10:00 2015-04-10 10:03:04
cookie1 2015-04-10 10:50:05 url6 6 2015-04-10 10:50:01 2015-04-10 10:10:00
cookie1 2015-04-10 11:00:00 url7 7 2015-04-10 10:50:05 2015-04-10 10:50:01
cookie2 2015-04-10 10:00:00 url11 1 1970-01-01 00:00:00 NULL
cookie2 2015-04-10 10:00:02 url22 2 2015-04-10 10:00:00 NULL
cookie2 2015-04-10 10:03:04 1url33 3 2015-04-10 10:00:02 2015-04-10 10:00:00
cookie2 2015-04-10 10:10:00 url44 4 2015-04-10 10:03:04 2015-04-10 10:00:02
cookie2 2015-04-10 10:50:01 url55 5 2015-04-10 10:10:00 2015-04-10 10:03:04
cookie2 2015-04-10 10:50:05 url66 6 2015-04-10 10:50:01 2015-04-10 10:10:00
cookie2 2015-04-10 11:00:00 url77 7 2015-04-10 10:50:05 2015-04-10 10:50:01
last_1_time: 指定了往上第1行的值,default為'1970-01-01 00:00:00'
cookie1第一行,往上1行為NULL,因此取默認(rèn)值 1970-01-01 00:00:00
cookie1第三行,往上1行值為第二行值,2015-04-10 10:00:02
cookie1第六行,往上1行值為第五行值,2015-04-10 10:50:01
last_2_time: 指定了往上第2行的值,為指定默認(rèn)值
cookie1第一行,往上2行為NULL
cookie1第二行,往上2行為NULL
cookie1第四行,往上2行為第二行值,2015-04-10 10:00:02
cookie1第七行,往上2行為第五行值,2015-04-10 10:50:01
?
LEAD
與LAG相反
LEAD(col,n,DEFAULT) 用于統(tǒng)計(jì)窗口內(nèi)往下第n行值
第一個(gè)參數(shù)為列名,第二個(gè)參數(shù)為往下第n行(可選,默認(rèn)為1),第三個(gè)參數(shù)為默認(rèn)值(當(dāng)往下第n行為NULL時(shí)候,取默認(rèn)值,如不指定,則為NULL)
SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LEAD(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS next_1_time,
LEAD(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS next_2_time
FROM lxw1234;
cookieid createtime url rn next_1_time next_2_time
-------------------------------------------------------------------------------------------
cookie1 2015-04-10 10:00:00 url1 1 2015-04-10 10:00:02 2015-04-10 10:03:04
cookie1 2015-04-10 10:00:02 url2 2 2015-04-10 10:03:04 2015-04-10 10:10:00
cookie1 2015-04-10 10:03:04 1url3 3 2015-04-10 10:10:00 2015-04-10 10:50:01
cookie1 2015-04-10 10:10:00 url4 4 2015-04-10 10:50:01 2015-04-10 10:50:05
cookie1 2015-04-10 10:50:01 url5 5 2015-04-10 10:50:05 2015-04-10 11:00:00
cookie1 2015-04-10 10:50:05 url6 6 2015-04-10 11:00:00 NULL
cookie1 2015-04-10 11:00:00 url7 7 1970-01-01 00:00:00 NULL
cookie2 2015-04-10 10:00:00 url11 1 2015-04-10 10:00:02 2015-04-10 10:03:04
cookie2 2015-04-10 10:00:02 url22 2 2015-04-10 10:03:04 2015-04-10 10:10:00
cookie2 2015-04-10 10:03:04 1url33 3 2015-04-10 10:10:00 2015-04-10 10:50:01
cookie2 2015-04-10 10:10:00 url44 4 2015-04-10 10:50:01 2015-04-10 10:50:05
cookie2 2015-04-10 10:50:01 url55 5 2015-04-10 10:50:05 2015-04-10 11:00:00
cookie2 2015-04-10 10:50:05 url66 6 2015-04-10 11:00:00 NULL
cookie2 2015-04-10 11:00:00 url77 7 1970-01-01 00:00:00 NULL
--邏輯與LAG一樣,只不過(guò)LAG是往上,LEAD是往下。
?
FIRST_VALUE
取分組內(nèi)排序后,截止到當(dāng)前行,第一個(gè)值
?SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1
FROM lxw1234;
cookieid createtime url rn first1
---------------------------------------------------------
cookie1 2015-04-10 10:00:00 url1 1 url1
cookie1 2015-04-10 10:00:02 url2 2 url1
cookie1 2015-04-10 10:03:04 1url3 3 url1
cookie1 2015-04-10 10:10:00 url4 4 url1
cookie1 2015-04-10 10:50:01 url5 5 url1
cookie1 2015-04-10 10:50:05 url6 6 url1
cookie1 2015-04-10 11:00:00 url7 7 url1
cookie2 2015-04-10 10:00:00 url11 1 url11
cookie2 2015-04-10 10:00:02 url22 2 url11
cookie2 2015-04-10 10:03:04 1url33 3 url11
cookie2 2015-04-10 10:10:00 url44 4 url11
cookie2 2015-04-10 10:50:01 url55 5 url11
cookie2 2015-04-10 10:50:05 url66 6 url11
cookie2 2015-04-10 11:00:00 url77 7 url11
?
LAST_VALUE
取分組內(nèi)排序后,截止到當(dāng)前行,最后一個(gè)值
?SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1
FROM lxw1234;
cookieid createtime url rn last1
-----------------------------------------------------------------
cookie1 2015-04-10 10:00:00 url1 1 url1
cookie1 2015-04-10 10:00:02 url2 2 url2
cookie1 2015-04-10 10:03:04 1url3 3 1url3
cookie1 2015-04-10 10:10:00 url4 4 url4
cookie1 2015-04-10 10:50:01 url5 5 url5
cookie1 2015-04-10 10:50:05 url6 6 url6
cookie1 2015-04-10 11:00:00 url7 7 url7
cookie2 2015-04-10 10:00:00 url11 1 url11
cookie2 2015-04-10 10:00:02 url22 2 url22
cookie2 2015-04-10 10:03:04 1url33 3 1url33
cookie2 2015-04-10 10:10:00 url44 4 url44
cookie2 2015-04-10 10:50:01 url55 5 url55
cookie2 2015-04-10 10:50:05 url66 6 url66
cookie2 2015-04-10 11:00:00 url77 7 url77
如果不指定ORDER BY,則默認(rèn)按照記錄在文件中的偏移量進(jìn)行排序,會(huì)出現(xiàn)錯(cuò)誤的結(jié)果
?SELECT cookieid,
createtime,
url,
FIRST_VALUE(url) OVER(PARTITION BY cookieid) AS first2
FROM lxw1234;
cookieid createtime url first2
----------------------------------------------
cookie1 2015-04-10 10:00:02 url2 url2
cookie1 2015-04-10 10:00:00 url1 url2
cookie1 2015-04-10 10:03:04 1url3 url2
cookie1 2015-04-10 10:50:05 url6 url2
cookie1 2015-04-10 11:00:00 url7 url2
cookie1 2015-04-10 10:10:00 url4 url2
cookie1 2015-04-10 10:50:01 url5 url2
cookie2 2015-04-10 10:00:02 url22 url22
cookie2 2015-04-10 10:00:00 url11 url22
cookie2 2015-04-10 10:03:04 1url33 url22
cookie2 2015-04-10 10:50:05 url66 url22
cookie2 2015-04-10 11:00:00 url77 url22
cookie2 2015-04-10 10:10:00 url44 url22
cookie2 2015-04-10 10:50:01 url55 url22
SELECT cookieid,
createtime,
url,
LAST_VALUE(url) OVER(PARTITION BY cookieid) AS last2
FROM lxw1234;
cookieid createtime url last2
----------------------------------------------
cookie1 2015-04-10 10:00:02 url2 url5
cookie1 2015-04-10 10:00:00 url1 url5
cookie1 2015-04-10 10:03:04 1url3 url5
cookie1 2015-04-10 10:50:05 url6 url5
cookie1 2015-04-10 11:00:00 url7 url5
cookie1 2015-04-10 10:10:00 url4 url5
cookie1 2015-04-10 10:50:01 url5 url5
cookie2 2015-04-10 10:00:02 url22 url55
cookie2 2015-04-10 10:00:00 url11 url55
cookie2 2015-04-10 10:03:04 1url33 url55
cookie2 2015-04-10 10:50:05 url66 url55
cookie2 2015-04-10 11:00:00 url77 url55
cookie2 2015-04-10 10:10:00 url44 url55
cookie2 2015-04-10 10:50:01 url55 url55
如果想要取分組內(nèi)排序后最后一個(gè)值,則需要變通一下:
?SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1,
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime DESC) AS last2
FROM lxw1234
ORDER BY cookieid,createtime;
cookieid createtime url rn last1 last2
-------------------------------------------------------------
cookie1 2015-04-10 10:00:00 url1 1 url1 url7
cookie1 2015-04-10 10:00:02 url2 2 url2 url7
cookie1 2015-04-10 10:03:04 1url3 3 1url3 url7
cookie1 2015-04-10 10:10:00 url4 4 url4 url7
cookie1 2015-04-10 10:50:01 url5 5 url5 url7
cookie1 2015-04-10 10:50:05 url6 6 url6 url7
cookie1 2015-04-10 11:00:00 url7 7 url7 url7
cookie2 2015-04-10 10:00:00 url11 1 url11 url77
cookie2 2015-04-10 10:00:02 url22 2 url22 url77
cookie2 2015-04-10 10:03:04 1url33 3 1url33 url77
cookie2 2015-04-10 10:10:00 url44 4 url44 url77
cookie2 2015-04-10 10:50:01 url55 5 url55 url77
cookie2 2015-04-10 10:50:05 url66 6 url66 url77
cookie2 2015-04-10 11:00:00 url77 7 url77 url77
Hive分析窗口函數(shù)(五) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP
GROUPING SETS,GROUPING__ID,CUBE,ROLLUP
這幾個(gè)分析函數(shù)通常用于OLAP中,不能累加,而且需要根據(jù)不同維度上鉆和下鉆的指標(biāo)統(tǒng)計(jì),比如,分小時(shí)、天、月的UV數(shù)。
數(shù)據(jù)準(zhǔn)備:
?CREATE EXTERNAL TABLE lxw1234 (
month STRING,
day STRING,
cookieid STRING
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
stored as textfile location '/tmp/lxw11/';
hive> select * from lxw1234;
OK
2015-03 2015-03-10 cookie1
2015-03 2015-03-10 cookie5
2015-03 2015-03-12 cookie7
2015-04 2015-04-12 cookie3
2015-04 2015-04-13 cookie2
2015-04 2015-04-13 cookie4
2015-04 2015-04-16 cookie4
2015-03 2015-03-10 cookie2
2015-03 2015-03-10 cookie3
2015-04 2015-04-12 cookie5
2015-04 2015-04-13 cookie6
2015-04 2015-04-15 cookie3
2015-04 2015-04-15 cookie2
2015-04 2015-04-16 cookie1
?
GROUPING SETS
在一個(gè)GROUP BY查詢中,根據(jù)不同的維度組合進(jìn)行聚合,等價(jià)于將不同維度的GROUP BY結(jié)果集進(jìn)行UNION ALL
?SELECT
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY month,day
GROUPING SETS (month,day)
ORDER BY GROUPING__ID;
month day uv GROUPING__ID
------------------------------------------------
2015-03 NULL 5 1
2015-04 NULL 6 1
NULL 2015-03-10 4 2
NULL 2015-03-12 1 2
NULL 2015-04-12 2 2
NULL 2015-04-13 3 2
NULL 2015-04-15 2 2
NULL 2015-04-16 2 2
等價(jià)于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
?
再如:
?SELECT
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY month,day
GROUPING SETS (month,day,(month,day))
ORDER BY GROUPING__ID;
month day uv GROUPING__ID
------------------------------------------------
2015-03 NULL 5 1
2015-04 NULL 6 1
NULL 2015-03-10 4 2
NULL 2015-03-12 1 2
NULL 2015-04-12 2 2
NULL 2015-04-13 3 2
NULL 2015-04-15 2 2
NULL 2015-04-16 2 2
2015-03 2015-03-10 4 3
2015-03 2015-03-12 1 3
2015-04 2015-04-12 2 3
2015-04 2015-04-13 3 3
2015-04 2015-04-15 2 3
2015-04 2015-04-16 2 3
等價(jià)于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day
?
其中的?GROUPING__ID,表示結(jié)果屬于哪一個(gè)分組集合。
CUBE
根據(jù)GROUP BY的維度的所有組合進(jìn)行聚合。
?SELECT
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY month,day
WITH CUBE
ORDER BY GROUPING__ID;
month day uv GROUPING__ID
--------------------------------------------
NULL NULL 7 0
2015-03 NULL 5 1
2015-04 NULL 6 1
NULL 2015-04-12 2 2
NULL 2015-04-13 3 2
NULL 2015-04-15 2 2
NULL 2015-04-16 2 2
NULL 2015-03-10 4 2
NULL 2015-03-12 1 2
2015-03 2015-03-10 4 3
2015-03 2015-03-12 1 3
2015-04 2015-04-16 2 3
2015-04 2015-04-12 2 3
2015-04 2015-04-13 3 3
2015-04 2015-04-15 2 3
等價(jià)于
SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM lxw1234
UNION ALL
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day
?
ROLLUP
是CUBE的子集,以最左側(cè)的維度為主,從該維度進(jìn)行層級(jí)聚合。
?比如,以month維度進(jìn)行層級(jí)聚合:
SELECT
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY month,day
WITH ROLLUP
ORDER BY GROUPING__ID;
month day uv GROUPING__ID
---------------------------------------------------
NULL NULL 7 0
2015-03 NULL 5 1
2015-04 NULL 6 1
2015-03 2015-03-10 4 3
2015-03 2015-03-12 1 3
2015-04 2015-04-12 2 3
2015-04 2015-04-13 3 3
2015-04 2015-04-15 2 3
2015-04 2015-04-16 2 3
可以實(shí)現(xiàn)這樣的上鉆過(guò)程:
月天的UV->月的UV->總UV
--把month和day調(diào)換順序,則以day維度進(jìn)行層級(jí)聚合:
SELECT
day,
month,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY day,month
WITH ROLLUP
ORDER BY GROUPING__ID;
day month uv GROUPING__ID
-------------------------------------------------------
NULL NULL 7 0
2015-04-13 NULL 3 1
2015-03-12 NULL 1 1
2015-04-15 NULL 2 1
2015-03-10 NULL 4 1
2015-04-16 NULL 2 1
2015-04-12 NULL 2 1
2015-04-12 2015-04 2 3
2015-03-10 2015-03 4 3
2015-03-12 2015-03 1 3
2015-04-13 2015-04 3 3
2015-04-15 2015-04 2 3
2015-04-16 2015-04 2 3
可以實(shí)現(xiàn)這樣的上鉆過(guò)程:
天月的UV->天的UV->總UV
(這里,根據(jù)天和月進(jìn)行聚合,和根據(jù)天聚合結(jié)果一樣,因?yàn)橛懈缸雨P(guān)系,如果是其他維度組合的話,就會(huì)不一樣)
?
這種函數(shù),需要結(jié)合實(shí)際場(chǎng)景和數(shù)據(jù)去使用和研究,只看說(shuō)明的話,很難理解。
官網(wǎng)的介紹: https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation%2C+Cube%2C+Grouping+and+Rollup
總結(jié)
以上是生活随笔為你收集整理的Hive分析窗口函数系列文章的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: hive大数据倾斜总结
- 下一篇: 深入浅出学Hive:Hive内建操作符与