spark:sortByKey实现二次排序
最近在項(xiàng)目中遇到二次排序的需求,和平常開發(fā)spark的application一樣,開始查看API,編碼,調(diào)試,驗(yàn)證結(jié)果。由于之前對spark的API使用過,知道API中的sortByKey()可以自定義排序規(guī)則,通過實(shí)現(xiàn)自定義的排序規(guī)則來實(shí)現(xiàn)二次排序。?
這里為了說明問題,舉了一個(gè)簡單的例子,key是由兩部分組成的,我們這里按key的第一部分的降序排,key的第二部分升序排,具體如下:
上面編碼從語法上沒有什么問題,可是運(yùn)行下報(bào)了如下錯(cuò)誤:
java.lang.reflect.InvocationTargetExceptionat sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)at java.lang.reflect.Method.invoke(Method.java:606)at org.apache.spark.serializer.SerializationDebugger$ObjectStreamClassMethods$.getObjFieldValues$extension(SerializationDebugger.scala:248)at org.apache.spark.serializer.SerializationDebugger$SerializationDebugger.visitSerializable(SerializationDebugger.scala:158)at org.apache.spark.serializer.SerializationDebugger$SerializationDebugger.visit(SerializationDebugger.scala:107)at org.apache.spark.serializer.SerializationDebugger$SerializationDebugger.visitSerializable(SerializationDebugger.scala:166)at org.apache.spark.serializer.SerializationDebugger$SerializationDebugger.visit(SerializationDebugger.scala:107)at org.apache.spark.serializer.SerializationDebugger$SerializationDebugger.visitSerializable(SerializationDebugger.scala:166)at org.apache.spark.serializer.SerializationDebugger$SerializationDebugger.visit(SerializationDebugger.scala:107)at org.apache.spark.serializer.SerializationDebugger$.find(SerializationDebugger.scala:66)at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:41)at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:81)at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:312)at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:305)at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:132)at org.apache.spark.SparkContext.clean(SparkContext.scala:1891)at org.apache.spark.SparkContext.runJob(SparkContext.scala:1764)at org.apache.spark.SparkContext.runJob(SparkContext.scala:1779)at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:885)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:148)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:109)at org.apache.spark.rdd.RDD.withScope(RDD.scala:286)at org.apache.spark.rdd.RDD.collect(RDD.scala:884)at org.apache.spark.api.java.JavaRDDLike$class.collect(JavaRDDLike.scala:335)at org.apache.spark.api.java.AbstractJavaRDDLike.collect(JavaRDDLike.scala:47)因此,我再次去查看相應(yīng)的spark Java API文檔,但是我沒有發(fā)現(xiàn)任何指明錯(cuò)誤的地方。好吧,那只能扒下源碼吧,在javaPairRDD中
def sortByKey(comp: Comparator[K], ascending: Boolean): JavaPairRDD[K, V] = { implicit val ordering = comp // Allow implicit conversion of Comparator to Ordering. fromRDD(new OrderedRDDFunctions[K, V, (K, V)](rdd).sortByKey(ascending)) }其實(shí)在OrderedRDDFunctions類中有個(gè)變量ordering它是隱形的:private val ordering = implicitly[Ordering[K]]。他就是默認(rèn)的排序規(guī)則,我們自己重寫的comp就修改了默認(rèn)的排序規(guī)則。到這里還是沒有發(fā)現(xiàn)問題,但是發(fā)現(xiàn)類OrderedRDDFunctions extends Logging with Serializable,又回到上面的報(bào)錯(cuò)信息,掃描到“serializable”!!!因此,返回上述代碼,查看Comparator interface實(shí)現(xiàn),發(fā)現(xiàn)原來是它沒有extend Serializable,故只需創(chuàng)建一個(gè) serializable的comparator就可以:public interface SerializableComparator<T> extends Comparator<T>, Serializable { }.?
具體如下:
總結(jié)下,在spark的Java API中,如果需要使用Comparator接口,須注意是否需要序列化,如sortByKey(),repartitionAndSortWithinPartitions()等都是需要序列化的。
總結(jié)
以上是生活随笔為你收集整理的spark:sortByKey实现二次排序的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Spark Java API:broad
- 下一篇: 基于用户行为的兴趣标签模型