日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

使用 28x28 bmp測試訓練後的模型 tensorflow mnist jupyter notebook

發布時間:2024/1/8 编程问答 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 使用 28x28 bmp測試訓練後的模型 tensorflow mnist jupyter notebook 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

訓練CNN/mnist好後,用以下指令保存模型及weight
model.save("05.h5")

?

取回使用
model = load_model("05_cnn.h5")

關於BMP
24 bit bmp檔,?檔頭54 byte, 之後每個像素RGB佔用3 byte,
28x28像素 = 54 + 28x28x3 = 54+2352 = 2406 byte
用apt-get kolourpaint4可以產生bmp

?

?

讀取bmp時要注意2點
1.bmp是由下行往上行存,讀入圖檔要反向
2.bmp的白是255, mnist的圖,白是0

mnist test的第一個字,白部份是0

程式實測

jupyter note 範例如下:

from keras.datasets import mnist from keras.models import load_model from keras.utils import np_utils from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Activation, Flatten from keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import keras import tensorflow as tf import numpy as npdef plot_image(image):fig=plt.gcf()fig.set_size_inches(2,2)plt.imshow(image,cmap='binary')plt.show()model = load_model("05_cnn.h5")(X_train_image, y_train_label), (X_test_image, y_test_label) = mnist.load_data() print(X_train_image.shape) x_train = X_train_image.reshape(X_train_image.shape[0],28,28,1) print(x_train.shape) x_train = x_train.astype('float32') x_train /= 255 y_train = keras.utils.to_categorical(y_train_label, num_classes=10) x_test = X_test_image.reshape(X_test_image.shape[0], 28, 28, 1) x_test = x_test.astype('float32') x_test /= 255 y_test = keras.utils.to_categorical(y_test_label, num_classes=10)def draw_1_28_28_1(np_ary_1_28_28_1):for i2 in range(0,28) :st1=""for i3 in range(0,28) :if np_ary_1_28_28_1[0][i2][i3][0] == 0 :st1=st1+" "else:st1=st1+"*"print(st1) def prediction_one(test_id):x1 = x_test[test_id:(test_id+1)]print(x1.shape)draw_1_28_28_1(x1) plot_image(X_test_image[test_id]);prediction = model.predict(x1)answser=np.argmax(prediction[0])return answserfor i1 in range(0,1): print("id=",i1," p=",prediction_one(i1))import array as ary x3=np.zeros((28,28),dtype='float32') print(x3.shape)with open("./6.bmp","rb") as f_bmp1: byte_ary = f_bmp1.read(54) print(str(byte_ary[0:2]))for i1 in range(0,28):st1=""byte_ary = f_bmp1.read(28*3)x2=np.frombuffer(byte_ary,np.uint8,28*3,0)#x2=x2.dtype='float32'x2=x2.reshape(28,3)for i3 in range(0,28) :x3[28-i1-1][i3]=255-x2[i3][0] for i3 in range(0,28) :if x2[i3][0] == 0 :st1=st1+" "else:st1=st1+"#" print(i1,st1) for i2 in range(0,28) :st1=""for i3 in range(0,28) :if x3[i2][i3] == 0 :st1=st1+" "else:st1=st1+"*"print(st1)x5=x3.reshape(1,28,28,1) x5 /=255predi1 = model.predict(x5) print("prediction-"np.argmax(predi1[0]))

?

總結

以上是生活随笔為你收集整理的使用 28x28 bmp測試訓練後的模型 tensorflow mnist jupyter notebook的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。