日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

3-订单持续时间的计算

發布時間:2024/1/8 编程问答 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 3-订单持续时间的计算 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
#讀取taxiod訂單表 #刪除練習 import pandas as pd taxiod = pd.read_csv(r'data-sample/TaxiOD.csv',header=None) # 要加上后綴名 .csv taxiod.columns=['VehicleNum','Stime','SLng','SLat','ELng','ELat','Etime'] taxiod C:\Program Files (x86)\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3146: DtypeWarning: Columns (0,2,3,4,5) have mixed types.Specify dtype option on import or set low_memory=False.has_raised = await self.run_ast_nodes(code_ast.body, cell_name, VehicleNumStimeSLngSLatELngELatEtime01234...464714464715464716464717464718
VehicleNumStimeSLngSLatELngELatEtime
2222300:03:23114.1674649999999922.562468114.2252350000000122.5527500:10:48
2222300:11:33114.2271522.554167114.2292179999999922.56021700:15:19
2222300:17:13114.2313540000000122.562166114.25579822.59096700000000300:29:06
2222300:36:45114.24019622.56365114.11996522.56666800:54:42
.....................
3694722:39:12114.00622.5481113.99622.537122:46:25
3694722:49:38113.99522.535113.92222.496523:13:15
3694723:24:24113.92122.5135113.9322.494223:30:32
3694723:37:09113.92822.5126113.91122.487923:49:10
3694723:52:18113.9122.4876NaNNaNNaN

464719 rows × 7 columns

taxiod=taxiod.drop([0]) # 刪除第一行 taxiod.index = range(len(taxiod)) # 重新排序索引 taxiod VehicleNumStimeSLngSLatELngELatEtime01234...464713464714464715464716464717
2222300:03:23114.1674649999999922.562468114.2252350000000122.5527500:10:48
2222300:11:33114.2271522.554167114.2292179999999922.56021700:15:19
2222300:17:13114.2313540000000122.562166114.25579822.59096700000000300:29:06
2222300:36:45114.24019622.56365114.11996522.56666800:54:42
2222301:01:14114.1354139999999822.575933114.16674822.60826701:08:17
.....................
3694722:39:12114.00622.5481113.99622.537122:46:25
3694722:49:38113.99522.535113.92222.496523:13:15
3694723:24:24113.92122.5135113.9322.494223:30:32
3694723:37:09113.92822.5126113.91122.487923:49:10
3694723:52:18113.9122.4876NaNNaNNaN

464718 rows × 7 columns

taxiod=taxiod[-taxiod['ELng'].isnull()] # 刪掉最后一行為空的 方法 先找到為空的 然后索引 然后去掉 然后賦值給taxiod tmp= pd.to_datetime(taxiod['Stime']) tmp 0 2021-03-03 00:03:23 1 2021-03-03 00:11:33 2 2021-03-03 00:17:13 3 2021-03-03 00:36:45 4 2021-03-03 01:01:14... 464712 2021-03-03 22:08:22 464713 2021-03-03 22:39:12 464714 2021-03-03 22:49:38 464715 2021-03-03 23:24:24 464716 2021-03-03 23:37:09 Name: Stime, Length: 464717, dtype: datetime64[ns] tmp1=pd.to_datetime(taxiod['Etime']) tmp1 0 2021-03-03 00:10:48 1 2021-03-03 00:15:19 2 2021-03-03 00:29:06 3 2021-03-03 00:54:42 4 2021-03-03 01:08:17... 464712 2021-03-03 22:36:53 464713 2021-03-03 22:46:25 464714 2021-03-03 23:13:15 464715 2021-03-03 23:30:32 464716 2021-03-03 23:49:10 Name: Etime, Length: 464717, dtype: datetime64[ns] Duration=tmp1-tmp Duration taxiod['Duration']=Duration taxiod <ipython-input-10-8b258a85ed6d>:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value insteadSee the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copytaxiod['Duration']=Duration VehicleNumStimeSLngSLatELngELatEtimeDuration01234...464712464713464714464715464716
2222300:03:23114.1674649999999922.562468114.2252350000000122.5527500:10:480 days 00:07:25
2222300:11:33114.2271522.554167114.2292179999999922.56021700:15:190 days 00:03:46
2222300:17:13114.2313540000000122.562166114.25579822.59096700000000300:29:060 days 00:11:53
2222300:36:45114.24019622.56365114.11996522.56666800:54:420 days 00:17:57
2222301:01:14114.1354139999999822.575933114.16674822.60826701:08:170 days 00:07:03
........................
3694722:08:22113.91422.5314113.99722.545622:36:530 days 00:28:31
3694722:39:12114.00622.5481113.99622.537122:46:250 days 00:07:13
3694722:49:38113.99522.535113.92222.496523:13:150 days 00:23:37
3694723:24:24113.92122.5135113.9322.494223:30:320 days 00:06:08
3694723:37:09113.92822.5126113.91122.487923:49:100 days 00:12:01

464717 rows × 8 columns

taxiod.rename(columns={'duration': 'Duration'}, inplace=True) # 重命名某列 C:\Program Files (x86)\Anaconda3\lib\site-packages\pandas\core\frame.py:4296: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrameSee the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copyreturn super().rename( taxiod VehicleNumStimeSLngSLatELngELatEtimeDuration01234...464712464713464714464715464716
2222300:03:23114.1674649999999922.562468114.2252350000000122.5527500:10:480 days 00:07:25
2222300:11:33114.2271522.554167114.2292179999999922.56021700:15:190 days 00:03:46
2222300:17:13114.2313540000000122.562166114.25579822.59096700000000300:29:060 days 00:11:53
2222300:36:45114.24019622.56365114.11996522.56666800:54:420 days 00:17:57
2222301:01:14114.1354139999999822.575933114.16674822.60826701:08:170 days 00:07:03
........................
3694722:08:22113.91422.5314113.99722.545622:36:530 days 00:28:31
3694722:39:12114.00622.5481113.99622.537122:46:250 days 00:07:13
3694722:49:38113.99522.535113.92222.496523:13:150 days 00:23:37
3694723:24:24113.92122.5135113.9322.494223:30:320 days 00:06:08
3694723:37:09113.92822.5126113.91122.487923:49:100 days 00:12:01

464717 rows × 8 columns

r=taxiod['Duration'].iloc[0] taxiod['order_time']=taxiod['Duration'].apply(lambda r:r.seconds) <ipython-input-13-d23b5d7f6867>:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value insteadSee the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copytaxiod['order_time']=taxiod['Duration'].apply(lambda r:r.seconds) taxiod.drop(columns=['Duration']) VehicleNumStimeSLngSLatELngELatEtimeorder_time01234...464712464713464714464715464716
2222300:03:23114.1674649999999922.562468114.2252350000000122.5527500:10:48445
2222300:11:33114.2271522.554167114.2292179999999922.56021700:15:19226
2222300:17:13114.2313540000000122.562166114.25579822.59096700000000300:29:06713
2222300:36:45114.24019622.56365114.11996522.56666800:54:421077
2222301:01:14114.1354139999999822.575933114.16674822.60826701:08:17423
........................
3694722:08:22113.91422.5314113.99722.545622:36:531711
3694722:39:12114.00622.5481113.99622.537122:46:25433
3694722:49:38113.99522.535113.92222.496523:13:151417
3694723:24:24113.92122.5135113.9322.494223:30:32368
3694723:37:09113.92822.5126113.91122.487923:49:10721

464717 rows × 8 columns

taxiod['hour']=taxiod['Stime'].apply(lambda r:r.split(':')[0]) taxiod <ipython-input-15-c7c6b55b9ff2>:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value insteadSee the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copytaxiod['hour']=taxiod['Stime'].apply(lambda r:r.split(':')[0]) VehicleNumStimeSLngSLatELngELatEtimeDurationorder_timehour01234...464712464713464714464715464716
2222300:03:23114.1674649999999922.562468114.2252350000000122.5527500:10:480 days 00:07:2544500
2222300:11:33114.2271522.554167114.2292179999999922.56021700:15:190 days 00:03:4622600
2222300:17:13114.2313540000000122.562166114.25579822.59096700000000300:29:060 days 00:11:5371300
2222300:36:45114.24019622.56365114.11996522.56666800:54:420 days 00:17:57107700
2222301:01:14114.1354139999999822.575933114.16674822.60826701:08:170 days 00:07:0342301
..............................
3694722:08:22113.91422.5314113.99722.545622:36:530 days 00:28:31171122
3694722:39:12114.00622.5481113.99622.537122:46:250 days 00:07:1343322
3694722:49:38113.99522.535113.92222.496523:13:150 days 00:23:37141722
3694723:24:24113.92122.5135113.9322.494223:30:320 days 00:06:0836823
3694723:37:09113.92822.5126113.91122.487923:49:100 days 00:12:0172123

464717 rows × 10 columns

import matplotlib.pyplot as plt fig =plt.figure(1,(7,3),dpi=250) ax =plt.subplot(111) plt.sca(ax)plt.boxplot(taxiod['order_time']/60) plt.ylabel('minutes') plt.xlabel('order time') plt.ylim(0,60)plt.show()

?

import matplotlib.pyplot as plt fig = plt.figure(1,(10,5),dpi = 250) ax = plt.subplot(111) plt.sca(ax)#整理數據 hour = taxiod['hour'].drop_duplicates().sort_values() datas = [] for i in range(len(hour)):datas.append(taxiod[taxiod['hour']==hour.iloc[i]]['order_time']/60) #繪制 plt.boxplot(datas) #更改x軸ticks的文字 plt.xticks(range(1,len(hour)+1),list(hour)) ###################################################################################plt.ylabel('Order time(minutes)') plt.xlabel('Order start time') plt.ylim(0,60)plt.show()

?

?

import seaborn as sns fig = plt.figure(1,(10,5),dpi = 250) ax = plt.subplot(111) plt.sca(ax)# 只需一行 sns.boxplot(x='hour',y=taxiod['order_time']/60,data=taxiod,ax=ax)plt.ylabel('order_time(minutes)') plt.xlabel('order start time') plt.ylim(0,(60)) plt.show()

?

總結

以上是生活随笔為你收集整理的3-订单持续时间的计算的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 国产人妖一区二区三区 | www.成人国产 | 麻豆回家视频区一区二 | 综合网在线 | 一起射导航 | 欧美精品aaa | 亚洲国产精品人人爽夜夜爽 | 国产成人精品一区二区三 | 天天视频黄色 | 牛牛av国产一区二区 | 国产精成人品免费观看 | 天堂中文资源在线 | 久久av一区二区 | 日韩视频在线观看二区 | 欧美精品一区二区三区在线 | 日韩在线小视频 | 夜夜涩 | 99热久久这里只有精品 | 亚洲影院在线 | 五月情网 | 国产精品久久久久久久久免费桃花 | 中文字幕av一区 | 超碰成人免费电影 | 国产精品99一区 | 在线观看黄色网页 | 成人午夜免费毛片 | 黄瓜视频色 | 日本激情视频在线观看 | 激情婷婷在线 | 国产精品三级在线 | 色婷五月 | 日韩不卡一二三区 | 天天狠狠 | 色噜噜综合 | 98堂 最新网名 | 色欲亚洲Av无码精品天堂 | 美女高潮黄又色高清视频免费 | 大肉大捧一进一出好爽 | 精品午夜久久久 | 欧洲亚洲一区二区三区 | 欧美日国产 | 色婷婷综合久久久久中文一区二区 | 激情偷乱人成视频在线观看 | 手机av在线网 | 最好看十大无码av | 91久久精品国产91久久性色tv | 成人毛片软件 | 成人一级片 | 国产探花视频在线观看 | 亚洲精品乱码久久久久久蜜桃动漫 | 日韩在线免费看 | 波多野结衣福利 | 偷偷草| 久久久久久逼 | 五月婷婷视频在线 | 操你妹影院 | 国产自产21区| 国产xxxx18| 成人欧美在线 | 亚洲欧美日韩色图 | 北京富婆泄欲对白 | 国产网红主播精品av | 麻豆私人影院 | 爱爱免费网站 | 国产精品国产三级国产专区51 | 日本女人黄色 | 新天堂网 | 91插插插插 | 亚洲理论在线 | 久久55| 亚洲成人av片 | 嫩草影院菊竹影院 | 在线观看欧美一区 | 超碰女| 爱福利视频网 | 久久久久99精品成人片试看 | 久草免费福利 | 2021中文字幕 | 国产欧美精品一区二区色综合 | 交视频在线播放 | 久久精品国产77777蜜臀 | 69人妻一区二区三区 | 日韩a视频 | hs网站在线观看 | 日本狠狠爱 | 少妇高潮一区二区三区99 | 熟女俱乐部五十路六十路av | 小sao货水好多真紧h无码视频 | 久久躁日日躁aaaaxxxx | 综合精品一区 | 日韩图色| 成年人在线免费看 | 成人动漫中文字幕 | 黄视频网站在线 | 野外做受又硬又粗又大视频√ | 69成人免费视频 | 毛茸茸日本熟妇高潮 | 影视av | 男女日日 |