日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

VGG16网络结构复现(Pytorch版)

發(fā)布時間:2023/12/31 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 VGG16网络结构复现(Pytorch版) 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

VGG有6種子模型,分別是A、A-LRN、B、C、D、E,我們??吹降幕臼荄、E這兩種模型,即VGG16,VGG19


為了方便閱讀,并沒有加上激活函數(shù)層

from torch import nn import torch from torchsummary import summaryclass VGG16(nn.Module):def __init__(self):super(VGG16, self).__init__()self.sum_Module = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1),nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),nn.MaxPool2d(2, 2),nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),nn.MaxPool2d(2, 2),nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),nn.MaxPool2d(2, 2),nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),nn.MaxPool2d(2, 2),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),nn.MaxPool2d(2, 2),nn.Flatten(),nn.Linear(7 * 7*512, 4096),#nn.Dropout(0.5),nn.Linear(4096, 4096),#nn.Dropout(0.5),nn.Linear(4096, 1000))def forward(self, x):x = self.sum_Module(x),return xif __name__ == '__main__':YOLO = VGG16()device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')inputs = YOLO.to(device)summary(inputs, (3, 224, 224),batch_size=1, device="cuda") # 分別是輸入數(shù)據(jù)的三個維度

總結(jié)

以上是生活随笔為你收集整理的VGG16网络结构复现(Pytorch版)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。