日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

《高等运筹学》复习题手写解答 Advanced Operations Research: Final Exam:Review Exercises

發布時間:2023/12/31 编程问答 29 豆豆
生活随笔 收集整理的這篇文章主要介紹了 《高等运筹学》复习题手写解答 Advanced Operations Research: Final Exam:Review Exercises 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

文章目錄

  • Nonlinear Program 非線性規劃
    • KKT condition KKT條件
    • Golden section method 黃金分割法
    • Newton's method 牛頓法
    • Gradient steepest descent/ ascent method 梯度下降/上升法
  • Integer Programming 整數規劃
    • Branch and bound 分支定界法
    • Gomory cutting plane algorithm 割平面法/ Column generation 列生成算法
  • Dynamic programming 動態規劃
    • IP 有整數約束
    • LP 無整數約束
  • Linear programming 線性規劃
    • Central path 中心路徑法(內點法)
    • Karmarkar算法(內點法)
    • Eliposoid method 橢球法(外點法)
    • Transportation problem & unimodular matrix 運輸問題與幺模矩陣
  • Graph Theory 圖論
    • Maximum flow 最大流
  • 附原題

Nonlinear Program 非線性規劃

Problem 29.
Suppose p<1,p≠0p<1,p\neq 0p<1,p?=0 . Show that the function of
f(x)=(∑i=1nxip)1/pf(x) ={( \sum_{i=1}^nx_i^p)}^{1/p} f(x)=(i=1n?xip?)1/p with domf=R++ndomf = R^n_{++}domf=R++n? is concave.

Solution

Problem 18.
Let ??? be a subset of EnE^nEn and let f∈C2f \in C^2fC2 be a function on ???. If x?x^?x? is a relative minimum point of fff over ???, then for any d∈End\in E^ndEn that is a feasible direction at x?x^?x? we have

  • ▽f(x?)d≥0\triangledown f(x^*)d\geq 0f(x?)d0
  • if ▽f(x?)d=0\triangledown f(x^*)d=0f(x?)d=0, then dT▽2f(x?)d≥0d^T\triangledown^2 f(x^*)d\geq 0dT2f(x?)d0
  • Solution
    Problem 4.
    Find the minimum number of ccc, such that any local optimal solution is a global optimal solution for the following nonlinear program of P4P4P4.
    P4)max?f(x)=?c?x12+x1x2+2x1?12x22s.t.x1≤2P4) \max \ f(x) = ?c?x^2_1 + x_1x_2 + 2x_1 ? \frac{1}{2}x_2^2 \\ s.t. \ \ x_1 ≤ 2 P4)max?f(x)=?c?x12?+x1?x2?+2x1??21?x22?s.t.??x1?2
    Solution

    KKT condition KKT條件

    Problem 3.
    Show the KKT condition for the nonlinear program of P3P3P3, and try to solve it with the KKT conditions.
    P3)max??2x12?2x1x2?x22+10x1+10x2s.t.x12+x22≤53x1+x2≤6P3) \ \max{ \ ?2x^2_1 ?2x_1x_2 ?x^2_2 + 10x_1 + 10x_2} \\ s.t. \ \ \ x^2_1 + x^2_2 ≤ 5 \\ \ \ \ \ \ \ \ 3x_1 + x_2 ≤ 6 P3)?max??2x12??2x1?x2??x22?+10x1?+10x2?s.t.???x12?+x22?5???????3x1?+x2?6
    Solution

    Golden section method 黃金分割法

    Problem 16.
    For the problem min?f(x)\min{f(x)}minf(x) over x∈[a,b]x\in [a,b]x[a,b], we use golden section method to solve it. Please prove the convergence ratio is 0.6180.6180.618.

    Solution

    Newton’s method 牛頓法

    Problem 17.
    For one dimension nonlinear problem min?f(x)\min f(x)minf(x) over x∈[a,b]x\in [a,b]x[a,b], we use Newton’s Method to solve it. Please prove the convergence ratio of Newton’s method is at least two.

    Solution

    Gradient steepest descent/ ascent method 梯度下降/上升法

    *Problem 4.
    max?f(x)=?12x12+x1x2+2x1?12x22\max \ f(x) = ?\frac{1}{2}x^2_1 + x_1x_2 + 2x_1 ? \frac{1}{2}x_2^2 \\ max?f(x)=?21?x12?+x1?x2?+2x1??21?x22? Use the gradient steepest ascent method to find the optimal solution of above nonlinear program, with the start point x0=(0,4)Tx_0 = (0,4)^Tx0?=(0,4)T.

    Solution

    Integer Programming 整數規劃

    Branch and bound 分支定界法

    Problem 1.
    Use branch and bound method to solve P1)P1)P1).
    Note that at each branching node, you can use graphic method to get the (local) upper bound for each node.
    Draw the branch and bound tree, and point out the Node Program, GLB and LUB clearly.
    P1)max?13x1+5x2s.t.3x1+2x2≤6.5?2x1+3x2≤8x1,x2≥0,integersP1) \max{\ \ \ 13x_1+5x_2}\\ s.t. \ \ 3x_1+2x_2\leq 6.5\\ -2x_1+3x_2\leq 8\\ x_1,x_2\geq0,integers P1)max???13x1?+5x2?s.t.??3x1?+2x2?6.5?2x1?+3x2?8x1?,x2?0,integers
    Solution

    branch and bound tree

    Gomory cutting plane algorithm 割平面法/ Column generation 列生成算法

    Problem 26.
    min?cTxs.t.Ax=bx∈integer\min \textbf{\textit{c}}^T\textbf{\textit{x}}\\ s.t. \textbf{\textit{Ax}}=\textbf{\textit{b}}\\ \textbf{\textit{x}}\in integer mincTxs.t.Ax=bxintegerFor above IPIPIP, suppose now we have a basic feasible solution corresponding to basis matrix B\textbf{\textit{B}}B and Non-basis N\textbf{\textit{N}}N, i.e., A=(B,N)\textbf{\textit{A}} = (\textbf{\textit{B}},\textbf{\textit{N}})A=(B,N), and let aij=(B?1Aj)ia_{ij} = (\textbf{\textit{B}}^{?1}\textbf{\textit{A}}_j)_iaij?=(B?1Aj?)i?and ai0=(B?1b)ia_{i0} = (\textbf{\textit{B}}^{?1}\textbf{\textit{b}})_iai0?=(B?1b)i?. Prove:
    xi+∑j∈N?aij?xj≤?ai0?x_i+\sum_{j\in \textbf{\textit{N}}}\left \lfloor a_{ij} \right \rfloor x_{j}\leq \left \lfloor a_{i0} \right \rfloor xi?+jN??aij??xj??ai0??
    Solution

    Problem 12.
    Use the Gomory cutting plane algorithm to solve the following integer linear programming.
    min?x1?2x2s.t.?4x1+6x2≤9x1+x2≤4x1,x2≥0,integers\min \ \ x_1 ?2x_2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ s.t. \ \ ?4x_1 + 6x_2 ≤ 9 \\ x_1 + x_2 ≤ 4 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ x_1,x_2 ≥ 0, integers min??x1??2x2????????????????s.t.???4x1?+6x2?9x1?+x2?4?????????????x1?,x2?0,integers
    Solution

    Problem 28.
    IP)min?cTxs.t.Ax=bx≥0and∈integersIP)\min{c^Tx} \\ s.t.\ \ Ax = b \\ x ≥ 0 \ and \in integers IP)mincTxs.t.??Ax=bx0?andintegersFor above IPIPIP, denote A=[a1,a2,???,an]A = [a_1,a_2,··· ,a_n]A=[a1?,a2?,???,an?] by columns. Let k<nk<nk<n, denote Ak=[a1,a2,???,ak]A_k = [a_1,a_2,··· ,a_k]Ak?=[a1?,a2?,???,ak?].
    IPR)min?cTxs.t.Ax=bx≥0IPR)\min{c^Tx} \\ s.t.\ \ Ax = b \\ \ \ \ \ \ \ x ≥ 0 IPR)mincTxs.t.??Ax=b??????x0IPRk)min?cTxs.t.Akx=bx≥0IPR_k)\min{c^Tx} \\ s.t.\ \ A_kx = b \\ \ \ \ \ \ \ x ≥ 0 IPRk?)mincTxs.t.??Ak?x=b??????x0Suppose xk?x_k^*xk??, and x?x^?x? is the optimal solution for subproblem IPRk)IPR_k)IPRk?) and IPR)IPR)IPR) respectively, and objectives of OBJIPRkOBJ_{IPR_k}OBJIPRk??,OBJIPROBJ_{IPR}OBJIPR? correspondingly. Let S={a1,a2,???,an}S = \{a_1,a_2,··· ,a_n\}S={a1?,a2?,???,an?}, BBB is the basis related to xk?x^?_kxk?? for IPRkIPR_kIPRk?.
    PP)min?ca?cBB?1as.t.a∈SPP)\min c_a ?c_BB^{?1}a\\ s.t.\ \ a \in S PP)minca??cB?B?1as.t.??aSPlease prove: If OBJPP≥0OBJ_{PP} ≥ 0OBJPP?0, then OBJIPRk=OBJIPROBJ_{IPR_k} = OBJ_{IPR}OBJIPRk??=OBJIPR?

    Solution

    Dynamic programming 動態規劃

    IP 有整數約束

    Problem 8.
    Use dynamic programming method to solve the following integer programming.
    max?2x1+3x2+x3+2x4s.t.5x1+7x2+6x3+5x4≤14x1,x2,x3,x4≥0,integers\max {\ \ 2x_1 + 3x_2 + x_3 + 2x_4}\\ \ \ \ \ \ \ \ \ \ \ \ \ s.t. \ \ \ 5x_1 + 7x_2 + 6x_3 + 5x_4 ≤ 14\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x_1,x_2,x_3,x_4 ≥ 0, integers max??2x1?+3x2?+x3?+2x4?????????????s.t.???5x1?+7x2?+6x3?+5x4?14?????????????????x1?,x2?,x3?,x4?0,integersNote that you need to point out recursive formula clearly, and write down calculation steps clearly.

    Solution

    LP 無整數約束

    *Problem 8.
    Use dynamic programming method to solve the following linear programming.
    max?2x1+3x2+x3+2x4s.t.5x1+7x2+6x3+5x4≤14x1,x2,x3,x4≥0,\max {\ \ 2x_1 + 3x_2 + x_3 + 2x_4}\\ \ \ \ \ \ \ \ \ \ \ \ \ s.t. \ \ \ 5x_1 + 7x_2 + 6x_3 + 5x_4 ≤ 14\\ \ \ \ \ x_1,x_2,x_3,x_4 ≥ 0, max??2x1?+3x2?+x3?+2x4?????????????s.t.???5x1?+7x2?+6x3?+5x4?14????x1?,x2?,x3?,x4?0,Note that you need to point out recursive formula clearly, and write down calculation steps clearly.

    Solution

    Linear programming 線性規劃

    Central path 中心路徑法(內點法)

    Problem 25.
    Let (x(μ),y(μ),s(μ))(x(\mu),y(\mu),s(\mu))(x(μ),y(μ),s(μ)) be the central path of
    x?s=μeAx=bATy+s=cx≥0,s≥0x?s = \mu e\\ Ax = b\\ A^Ty + s = c\\ x ≥ 0,s ≥ 0 x?s=μeAx=bATy+s=cx0,s0 Then prove:
    (a) The central path point (x(μ),y(μ),s(μ))(x(\mu),y(\mu),s(\mu))(x(μ),y(μ),s(μ)) is bounded for 0<μ≤μ00 < \mu ≤ \mu_00<μμ0? and any given 0<μ<∞0 < \mu < ∞0<μ<.
    (b) For 0<μ′<μ0 < {\mu}'< \mu0<μ<μ,
    cTx(μ′)≤cTx(μ)andbTy(μ′)≥bTy(μ)c^Tx( {\mu}') ≤ c^Tx(\mu)\ \ and\ \ b^Ty( {\mu}') ≥ b^Ty(μ) cTx(μ)cTx(μ)??and??bTy(μ)bTy(μ)Furthermore, if x(μ′)≠x(μ)x( {\mu}')\neq x(\mu)x(μ)?=x(μ) and y(μ′)≠y(μ)y( {\mu}')\neq y(\mu)y(μ)?=y(μ).
    cTx(μ′)<cTx(μ)andbTy(μ′)>bTy(μ)c^Tx( {\mu}') < c^Tx(\mu)\ \ and\ \ b^Ty( {\mu}') > b^Ty(μ) cTx(μ)<cTx(μ)??and??bTy(μ)>bTy(μ)
    Solution

    Problem 11.
    Compute the central path for the following linear programming.
    min?x1s.t.x1+x2+x3=2\min{\ x_1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ s.t. \ \ x_1 + x_2 + x_3 = 2 min?x1??????????????????????????s.t.??x1?+x2?+x3?=2
    Solution

    Karmarkar算法(內點法)

    Problem 6.
    What are the differences between Karmarkar method and Simplex method for linear programming? Please show the logics of them clearly. Possibly you can use figures to show what your idea.

    Solution

    Eliposoid method 橢球法(外點法)

    Problem 7.
    Use ellipsoid method solve:
    max?0s.t.x1+5x2≤7x1+2x2≥6x1,x2≥0.\max \ \ 0 \\ s.t. \ \ x_1 + 5x_2 ≤ 7 \\ \ \ \ \ \ \ \ \ x_1 + 2x_2 ≥ 6 \\ \ \ \ \ x_1,x_2 ≥ 0 . max??0s.t.??x1?+5x2?7????????x1?+2x2?6????x1?,x2?0.The initial Ellipsoid is taken to be E(0,100×I2×2)E(0,100×I_{2×2})E(0,100×I2×2?).
    You only need to give THREE STEPS

    Solution

    Transportation problem & unimodular matrix 運輸問題與幺模矩陣

    Problem 20.
    For transportation problem stated as follows.
    There are m origins that contain various amounts of a commodity that must be shipped to nnn destinations to meet demand requirements. Specially, origin iii contains an amount aia_iai?, and destination jjj has a requirement of amount bib_ibi?. It is assumed that the system is balanced in the sense that total supply equals total demand. There is unit cost cijc_{ij}cij? associated with the shipping of the commodity from origin iii to destination jjj. The problem is to find the shipping pattern between origins and destinations that satisfies all the requirements and minimized the total shipping cost.
    (1) build an mixed integer linear programming model for above problem.
    (2) If the row and column sums of a transportation problem are integers, then the basic variables in any basic solution are integers. 如果運輸問題的行和列的和是整數,證明所有基可行解的基變量為整數。

    Problem 21.
    A matrix A\textbf{\textit{A}}A is said to be totally unimodular if the determinant of every square submatrix formed from it has value 0,+10,+10,+1 or ?1?1?1. (完全幺模矩陣的各階子式均為0,1或-1)
    (1) Show that the matrix A\textbf{\textit{A}}A defining the equality constraints of a transportation prolblem is totally unimodular. 證明運輸問題的系數矩陣是完全幺模的。
    (2) In the system of equations Ax=b\textbf{\textit{Ax}}=\textbf{\textit{b}}Ax=b, assume that A\textbf{\textit{A}}A is totally unimodular and that all elements of A\textbf{\textit{A}}A and b\textbf{\textit{b}}b are integers. Show that all basic solutions have integer components.
    與Problem20(2)的區別在于:此時A\textbf{\textit{A}}A是任意矩陣,秩不再是m+n?1m+n-1m+n?1

    Solution

    Graph Theory 圖論

    Maximum flow 最大流

    Problem 9.
    Use the Ford-Fulkerson method to solve decide the maximum flow for the following network problem.

    Solution

    附原題






    總結

    以上是生活随笔為你收集整理的《高等运筹学》复习题手写解答 Advanced Operations Research: Final Exam:Review Exercises的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。