日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

LaTeX符号语法总结

發(fā)布時(shí)間:2023/12/31 编程问答 40 豆豆
生活随笔 收集整理的這篇文章主要介紹了 LaTeX符号语法总结 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

LaTeX符號(hào)語(yǔ)法總結(jié)

    • 運(yùn)算符
    • 希臘字母
    • 字母類符號(hào)
    • 括號(hào)
    • 箭頭
    • 幾何學(xué)
    • 函數(shù)
    • 強(qiáng)調(diào)符號(hào)
    • 空白符號(hào)
    • 省略符號(hào)
    • 數(shù)值編號(hào)
    • 分式
    • 上下標(biāo)
    • 根式
    • 積分
    • 求積
    • 求和
  • 極限
    • 數(shù)列
    • 矩陣
    • 行列式
    • 排列組合
    • 分段函數(shù)
    • 化學(xué)方程式
    • 文本著色
    • 文本加粗

運(yùn)算符

∞\infty \infty≠\neq= \neq×\times× \times÷\div÷ \div~\sim \sim
±\pm± \pm?\mp? \mp≤\leq \leq≥\geq \geq≈\approx \approx
%\%% %?\ast? \ast?\cdot? \cdot≡\equiv \equiv?\cong? \cong
∈\in \in?\ni? \ni?\exists? \exists?\nexists? \nexists∝\propto \propto
∪\cup \cup∩\cap \cap⊥\perp \perp∥\parallel \parallel°\circ° \circ
?\subseteq? \subseteq??? ???? ??\ncong? \ncong?\nsim? \nsim
=== =+++ +?\ll? \ll?\gg? \gg?\subset? \subset
?\doteq? \doteq<<< <>>> >?\prec? \prec?\succ? \succ
?\preceq? \preceq?\succeq? \succeq?\supset? \supset?\simeq? \simeq?\supseteq? \supseteq
?\nsubseteq? \nsubseteq?\sqsubset? \sqsubset?\sqsupset? \sqsupset?\Join? \Join?\notin/ \notin
∫\int \int?\iint? \iint?\iiint? \iiint?\oiiint?? \oiiint∑\sum \sum
∏\prod \prod?\coprod? \coprod?\bigwedge? \bigwedge?\bigvee? \bigvee?\bigcap? \bigcap
?\bigcup? \bigcup?\bigodot? \bigodot?\bigoplus? \bigoplus?\bigotimes? \bigotimes?\biguplus? \biguplus
\\backslash\ \backslash/// /?\divideontimes? \divideontimes?\star? \star?\wr? \wr
△\vartriangle \vartriangle?\ddag? \ddag?\diamond? \diamond?\dag? \dag∧\wedge \wedge
∨\vee \vee⊙\odot \odot?\otimes? \otimes⊕\oplus \oplus?\ominus? \ominus
?\Cup? \Cup?\Cap? \Cap?\dotplus? \dotplus?\intercal? \intercal∵\(yùn)because \because
∴\therefore \therefore∽\backsim \backsim?\uplus? \uplus∝\propto \propto?\oiint?? \oiint
∮\oint \oint?\bigsqcup? \bigsqcup?\vdash? \vdash?\dashv? \dashv?\bowtie? \bowtie
?\sqsubseteq? \sqsubseteq?\sqsupseteq? \sqsupseteq?\models? \models∣\mid \mid∥\parallel \parallel
?\smile? \smile?\frown? \frown?\asymp? \asymp::: :±\pm± \pm
‵\backprime \backprime′\prime \prime?????? ???????? ??

希臘字母

α\alphaα \alphaβ\betaβ \betaγ\gammaγ \gammaδ\deltaδ \delta?\phi? \phi
?\epsilon? \epsilonζ\zetaζ \zetaη\etaη \etaθ\thetaθ \thetaι\iotaι \iota
κ\kappaκ \kappaλ\lambdaλ \lambdaμ\muμ \muν\nuν \nuξ\xiξ \xi
ρ\rhoρ \rhoσ\sigmaσ \sigmaτ\tauτ \tauυ\upsilonυ \upsilonφ\(chéng)varphiφ \varphi
χ\chiχ \chiω\omegaω \omegaπ\(zhòng)piπ \piψ\psiψ \psiε\varepsilonε \varepsilon
?\vartheta? \varthetaooo o?\varpi? \varpi?\varrho? \varrho?\varsigma? \varsigma
φ\(chéng)varphiφ \varphiΞ\XiΞ \XiΓ\GammaΓ \GammaΔ\DeltaΔ \DeltaΛ\LambdaΛ \Lambda
Ω\OmegaΩ \OmegaΦ\PhiΦ \PhiΨ\PsiΨ \PsiΠ\PiΠ \PiΣ\SigmaΣ \Sigma
Θ\ThetaΘ \ThetaΥ\UpsilonΥ \Upsilon

字母類符號(hào)

?\aleph? \aleph?\beth? \beth?\daleth? \daleth?\gimel? \gimel?\partial? \partial
?\Finv? \Finv?\Re? \Re?\ell? \elle\ethe \eth?\Im? \Im
?\hslash? \hslash?\complement? \complement?\wp? \wp?\forall? \forall

括號(hào)

((( ())) )[[[ []]] ]{\{{ \{
}\}} \}∣\vert \vert∥\Vert \Vert/// /

箭頭

←\leftarrow \leftarrow→\to \to→\rightarrow \rightarrow↑\uparrow \uparrow↓\downarrow \downarrow
?\longleftarrow? \longleftarrow?\longrightarrow? \longrightarrow?\Leftarrow? \Leftarrow?\Rightarrow? \Rightarrow?\mapsto? \mapsto
?\leftrightarrow? \leftrightarrow?\nleftarrow? \nleftarrow?\nrightarrow? \nrightarrow?\rightharpoonup? \rightharpoonup?\leftharpoonup? \leftharpoonup
?\nleftrightarrow? \nleftrightarrow?\Leftrightarrow? \Leftrightarrow?\nLeftrightarrow? \nLeftrightarrow?\nLeftarrow? \nLeftarrow?\nRightarrow? \nRightarrow

幾何學(xué)

∠\angle \angle?\sphericalangle? \sphericalangle?\nmid? \nmid?\nparallel? \nparallel■\blacksquare \blacksquare
?\star? \star?\bullet? \bullet★\bigstar \bigstar□\square \square°\circ° \circ

函數(shù)

Pr?\PrPr \Prsin?\sinsin \sincos?\coscos \cosexp?\expexp \expdet?\detdet \det
lim?\limlim \limln?\lnln \lnlog?\loglog \logmax?\maxmax \maxmin?\minmin \min
tan?\tantan \tanarg?\argarg \arglg?\lglg \lgarcsin?\arcsinarcsin \arcsincot?\cotcot \cot
sh?\shsh \sh

強(qiáng)調(diào)符號(hào)

a˙\dot{a}a˙ \dot{a}a¨\ddot{a}a¨ \ddot{a}a^\hat{a}a^ \hat{a}a~\tilde{a}a~ \tilde{a}aˉ\bar{a}aˉ \bar{a}
a?\vec{a}a \vec{a}xyz ̄\overline{xyz}xyz? \overline{xyz}xyz^\widehat{xyz}xyz? \widehat{xyz}xyz~\widetilde{xyz}xyz? \widetilde{xyz}aˇ\check{a}aˇ \check{a}
aˊ\acute{a}aˊ \acute{a}aˋ\grave{a}aˋ \grave{a}a?\breve{a}a? \breve{a}

空白符號(hào)

aba\qquad{b}aba\qquad{b}aba\quad{b}aba\quad{b}aba \ ba?ba \ baba \; baba\ ; baba \, baba \, b
aba bab a ba?ba \! bab a \! b

省略符號(hào)

?\cdots? \cdots…\ldots \ldots?\vdots? \vdots?\ddots? \ddots

數(shù)值編號(hào)

ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ

分式

基本格式:
\frac{分子}{分母} → 分子分母\frac{分子}{分母}分母分子?

樣例:
dydx\frac{dy}{dx}dxdy? ← \frac{dy}{dx}

?y?x\frac{\partial{y}}{\partial{x}}?x?y? ← \frac{\partial{y}}{\partial{x}}

上下標(biāo)

基本格式:
anytext_{downtext}^{uptext} → anytextdowntextuptextanytext_{downtext}^{uptext}anytextdowntextuptext?

也可以顛倒過(guò)來(lái):anytext^{uptext}\_{downtext}

還可以只加一種:anytext_{downtext} 或 anytext^{uptext}

樣例:

x2x^{2}x2 ← x^{2}

H2OH_{2}OH2?O ← H_{2}O

根式

基本格式:
\sqrt[開根冪次數(shù)]{被開根數(shù)} → 被開根數(shù)開根冪次數(shù)\sqrt[開根冪次數(shù)]{被開根數(shù)}開根冪次數(shù)被開根數(shù)?

樣例:

2\sqrt{2}2? ← \sqrt{2}

23\sqrt[3]{2}32? ← \sqrt[3]{2}

3n\sqrt[n]{3}n3? ← \sqrt[n]{3}

積分

基本格式:
\int_{積分下限}^{積分上限} → ∫積分下限積分上限\int_{積分下限}^{積分上限}積分下限積分上限?

也可以顛倒過(guò)來(lái):\int^{積分上限}_{積分下限}

樣例:
\int^{3}_{8}x^3dx → ∫83x3dx\int^{3}_{8}x^3dx83?x3dx

求積

基本格式:
\prod_{downtext}^{uptext}{text} → ∏downtextuptexttext\prod_{downtext}^{uptext}{text}downtextuptext?text

樣例:
\prod_{k=1}^{n}f(k) → ∏k=1nf(k)\prod_{k=1}^{n}f(k)k=1n?f(k)

要想把上下標(biāo)放到求和/求積符號(hào)上方和下方,則格式為:
\prod\limits_{k=1}^{n}f(k) → ∏k=1nf(k)\prod\limits_{k=1}^{n}f(k)k=1n?f(k)

求和

\sum\limits_{downtext}^{uptext}{text} → ∑downtextuptexttext\sum\limits_{downtext}^{uptext}{text}downtextuptext?text

\sum\limits_{i=1}^{n}{f(i)} → ∑i=1nf(i)\sum\limits_{i=1}^{n}{f(i)}i=1n?f(i)

極限

\lim\limits_{x\to{0}}{\frac{\sin{x}}{x}}=1 → lim?x→0sin?xx=1\lim\limits_{x\to{0}}{\frac{\sin{x}}{x}}=1x0lim?xsinx?=1

數(shù)列

A=\{a_{1},a_{2},\ldots,a_{n}\} → A={a1,a2,…,an}A=\{a_{1},a_{2},\ldots,a_{n}\}A={a1?,a2?,,an?}

矩陣

\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} → 0110\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}01?10?

\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} → (0?ii0)\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}(0i??i0?)

\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} → [0?110]\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}[01??10?]

\begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} → {100?1}\begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix}{10?0?1?}

\begin{bmatrix} 1 & 1 & \ldots & 1 \\ 2 & 2^{2} & \ldots & 2^{n} \\ 3 & 3^{2} & \ldots & 3^{n} \\ \vdots & \vdots & \ddots & \vdots \\ n & n^{2} & \ldots & n^{n} \end{bmatrix} → [11…1222…2n332…3n????nn2…nn]\begin{bmatrix} 1 & 1 & \ldots & 1 \\ 2 & 2^{2} & \ldots & 2^{n} \\ 3 & 3^{2} & \ldots & 3^{n} \\ \vdots & \vdots & \ddots & \vdots \\ n & n^{2} & \ldots & n^{n} \end{bmatrix}???123?n?12232?n2???12n3n?nn????

行列式

\begin{vmatrix} a & b \\ c & d \end{vmatrix} → ∣abcd∣\begin{vmatrix} a & b \\ c & d \end{vmatrix}?ac?bd??

\begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix} → ∥i00?i∥\begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix}?i0?0?i??

排列組合

\binom{a}{b}或\tbinom{a}{b} → (ab)\binom{a}{b}(ba?)

\dbinom{a}{b} → (ab)\dbinom{a}{b}(ba?)

C_{3}^{1} → C31C_{3}^{1}C31?

A_{3}^{1} → A31A_{3}^{1}A31?

分段函數(shù)

\Psi_{A}(x)=\begin{cases}1, & x\in{A} \\ 0, & x\notin{A} \end{cases} → ΨA(x)={1,x∈A0,x?A\Psi_{A}(x)=\begin{cases}1, & x\in{A} \\ 0, & x\notin{A} \end{cases}ΨA?(x)={1,0,?xAx/A?

化學(xué)方程式

C+O_{2}\stackrel{點(diǎn)燃}{\longrightarrow}{CO_{2}} → C+O2?點(diǎn)燃CO2C+O_{2}\stackrel{點(diǎn)燃}{\longrightarrow}{CO_{2}}C+O2??點(diǎn)燃?CO2?

文本著色

\textcolor{red}{a+b=c} → a+b=c\textcolor{red}{a+b=c}a+b=c

文本加粗

不加粗:A → AAA

加粗:\textbf{A} → A\textbf{A}A

總結(jié)

以上是生活随笔為你收集整理的LaTeX符号语法总结的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。