人行征信报告(上)——一代征信报告的变量梳理
在之前文章中,我們提到一份完整的征信報告包括的內容,具體報告內容如下:
?
?
細細梳理,任何關于一份征信的內容,主要包括的內容如下:
?
?
以上三個模板的字段信息,我們進一步梳理成一下具體的變量細則,對應輸出的變量的名稱與變量的邏輯如下:
?
貸款方面
?
貸款方面的數據,根據征信的情況,可以按照逾期的狀態跟逾期的天數交叉結合成不同時間切片的數據,具體我們可以衍生出以下的變量的邏輯,即為多長時間內,還款記錄中逾期狀態的出現某狀態的次數,以下我們舉例說明:
?
1.貸款最近3個還款期出現M1(逾期1-30天)或以上的記錄次數:
ap_pbc_loanlist(row)貸款明細中,每筆貸款做以下條件判斷,返回滿足條件的次數(每筆求和);
條件為:最近三個月還款記錄是否出現>=1
?
2.貸款最近3個還款期出現M2(逾期31-60天)或以上的記錄次數:
ap_pbc_loanlist(row)貸款明細中,每筆貸款做以下條件判斷,返回滿足條件的次數(每筆求和);
條件為:最近三個月還款記錄是否出現>=2
....
3.貸款最近6個還款期出現M1(逾期1-30天)或以上的記錄次數:
ap_pbc_loanlist(row)貸款明細中,每筆貸款做以下條件判斷,返回滿足條件的次數(每筆求和);
條件為:最近六個月還款記錄是否出現>=1
….
?
貸記卡方面
?
類比貸款的內容,將貸記卡的信息,也按照時間跟逾期的狀態衍生出以下方面的內容:
?
1.貸記卡最近3個還款期出現M1(逾期1-30天)或以上的記錄筆數:
ap_pbc_creditlist(row)信用卡明細中,每張貸記卡做以下條件判斷,返回滿足條件的次數(每筆求和);
條件為:最近三個月還款記錄是否出現>=1
……
?
2.貸記卡最近3個還款期出現M3(逾期61-90天)或以上的記錄次數
ap_pbc_creditlist(row)信用卡明細中,每張貸記卡做以下條件判斷,返回滿足條件的次數(每筆求和);
條件為:最近三個月還款記錄是否出現>=2
……
?
其他方面
?
征信數據中,其他方面的數據有一部分是包括在貸款跟貸記卡的信息里面,但因為這些變量在做規則和模型中,信息熵大,所以單獨拎出來做成某些規則:
?
1.是否有未結清汽車貸款且最近3個月有過逾期:
ap_pbc_loanlist(row)貸款明細中account_state_name賬戶狀態<>結清+loan_type_name貸款類型=個人汽車貸款+近三個月逾期(邏輯為非N,*)
?
2.未結清貸款筆數:
取ap_pbc_shareanddebtsum(row)中,share_name=未結清貸款時,account_count的值
?
3.當前是否有未結清助學貸款:
ap_pbc_loanlist(row)貸款明細中 account_state_name賬戶狀態<>結清+loan_type_name貸款類型=個人助學貸款
?
最后本篇文章所提及的征信報告以及對于的征信的數據變量字段,我們都梳理成具體的字段都統一上傳到知識星球上,大家可以上去查閱,謝謝。
?
?
關于風控知識,如果有興趣學習的同學,也可以加一下官方客服官微了解下。
報名星球請添加小番微信,備注下行業+風控從業模塊,謝謝您!
番茄學院管理員:小番
備注請填寫行業崗位,謝謝啦!
更多干貨資料,請關注公眾號:番茄風控大數據
總結
以上是生活随笔為你收集整理的人行征信报告(上)——一代征信报告的变量梳理的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: PCS7 DCS 水泥粉磨程序
- 下一篇: xy轴坐标图数字表示_cad图纸上的X、