日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

倒向随机微分方程(BSDE)解对终端值的依赖性

發(fā)布時(shí)間:2023/12/31 编程问答 38 豆豆
生活随笔 收集整理的這篇文章主要介紹了 倒向随机微分方程(BSDE)解对终端值的依赖性 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

筆者在學(xué)習(xí)過(guò)程發(fā)現(xiàn),BSDE的解對(duì)終端值的依賴(lài)性在網(wǎng)上很難找到證明,故在證明后整理如下,希望能給后來(lái)者一些便利。

?dYt=g(s,Ys,Zs)ds?ZsdWs,t∈[0,T]-dY_{t}=g(s,Y_{s},Z_{s})ds-Z_{s}dW_{s}, t \in[0,T]?dYt?=g(s,Ys?,Zs?)ds?Zs?dWs?,t[0,T]

YT=ξY_T=\xiYT?=ξ

(H1)∫0T∣g(,0,0)∣ds\int_{0}^{T}|g( ,0,0)|ds0T?g(,0,0)ds∈\inL2(Ω,Ft,P;Rn)L^2 (\Omega,\mathscr{F_t},P;\mathbb{R}^n)L2(Ω,Ft?,P;Rn)

(H2)∣g(t,y,z)?g(t,y′,z′)∣≤|g(t,y,z)-g(t,y',z')|\leqg(t,y,z)?g(t,y,z)C(∣y?y′∣+∣z?z′∣),y∈Rn,z∈Rn×dC(|y-y'|+|z-z'|),y \in\mathbb{R}^n,z\in\mathbb{R}^{n \times d}C(y?y+z?z),yRn,zRn×d

則有如下不等式:

Esup?0≤t≤T∣Yt?Yt^∣2+E∫0T∣Zs?Zs^∣2ds≤C0E∣ξ?ξ^∣2E\sup\limits_{0 \leq t \leq T}|Y_t-\hat{Y_t}|^2+E\int_0^T|Z_s-\hat{Z_s}|^2ds \leq C_0E|\xi-\hat{\xi}|^2E0tTsup?Yt??Yt?^?2+E0T?Zs??Zs?^?2dsC0?Eξ?ξ^?2

證明:

①對(duì)∣Ys?Ys^∣2eβ(s?t)Ito^|Y_s-\hat{Y_s}|^2e^{\beta(s-t)}It\hat{o}Ys??Ys?^?2eβ(s?t)Ito^求導(dǎo),在[t,T][t,T][t,T]上積分有:
∣YT?YT^∣2eβ(T?t)?∣Yt?Yt^∣2=∫tT(β∣Ys?Ys^∣2+∣Zs?Zs^∣2)eβ(s?t)ds+∫tT2eβ(s?t)(Ys?Ys^)(Zs?Zs^)dWs?∫tT2eβ(s?t)(Ys?Ys^)(g(s,Ys,Zs)?g(s,Ys^,Zs^))ds|Y_T-\hat{Y_T}|^2e^{\beta(T-t)}-|Y_t-\hat{Y_t}|^2=\int_t^T(\beta|Y_s-\hat{Y_s}|^2+|Z_s-\hat{Z_s}|^2)e^{\beta(s-t)}ds+\int_t^T2e^{\beta(s-t)}(Y_s-\hat{Y_s})(Z_s-\hat{Z_s})dW_s-\int_t^T2e^{\beta(s-t)}(Y_s-\hat{Y_s})(g(s,Y_s,Z_s)-g(s,\hat{Y_s},\hat{Z_s}))dsYT??YT?^?2eβ(T?t)?Yt??Yt?^?2=tT?(βYs??Ys?^?2+Zs??Zs?^?2)eβ(s?t)ds+tT?2eβ(s?t)(Ys??Ys?^?)(Zs??Zs?^?)dWs??tT?2eβ(s?t)(Ys??Ys?^?)(g(s,Ys?,Zs?)?g(s,Ys?^?,Zs?^?))ds
利用2ab=aβ2bβ≤β2a2+42βb22ab=a \sqrt{\beta} \frac{2b}{\sqrt{\beta}} \leq \frac{\beta}{2}a^2+\frac{4}{2\beta}b^22ab=aβ?β?2b?2β?a2+2β4?b2,并對(duì)上式兩端取條件期望有:
∣Yt?Yt^∣2+|Y_t-\hat{Y_t}|^2+Yt??Yt?^?2+
(為節(jié)省時(shí)間,附上圖片,就不一一贅述了。)

下圖對(duì)(i)部分的證明(打紅色問(wèn)號(hào)處),正確證明方式見(jiàn)空格后的證明。

如有錯(cuò)誤處,請(qǐng)指正!

總結(jié)

以上是生活随笔為你收集整理的倒向随机微分方程(BSDE)解对终端值的依赖性的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。