OpenCV:使用OpenCV3随机森林进行统计特征多类分析
生活随笔
收集整理的這篇文章主要介紹了
OpenCV:使用OpenCV3随机森林进行统计特征多类分析
小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
???????? 原文鏈接:在opencv3中的機(jī)器學(xué)習(xí)算法練習(xí):對(duì)OCR進(jìn)行分類(lèi)????????????
???????? 本文貼出的代碼為自己的訓(xùn)練集所用,作為參考。可運(yùn)行demo程序請(qǐng)拜訪(fǎng)原作者。
???????? CNN作為圖像識(shí)別和檢測(cè)器,在分析物體結(jié)構(gòu)分布的多類(lèi)識(shí)別中具有絕對(duì)的優(yōu)勢(shì)。通多多層卷積核Pooling實(shí)現(xiàn)對(duì)物體表面分布的模板學(xué)習(xí),以卷積核的形式存儲(chǔ)在網(wǎng)絡(luò)中。而對(duì)于統(tǒng)計(jì)特征,暫時(shí)沒(méi)有明確的指導(dǎo)規(guī)則。
???????? opencv3中的ml類(lèi)與opencv2中發(fā)生了變化,下面列舉opencv3的機(jī)器學(xué)習(xí)類(lèi)方法實(shí)例,以隨機(jī)森林為例。
代碼:
// 讀取文件數(shù)據(jù)bool read_num_class_data( const string& fileFeatureTrain, int numF,int fLen, cv::Mat* _data, cv::Mat* _responses){using namespace cv;Mat el_ptr(1, numF, CV_32F);vector<int> responses(0);_data->release();_responses->release();freopen(fileFeatureTrain.c_str(), "r", stdin);cout << "The feature is loading....." << endl;int i = 0;int label = 0;for (int i = 0; i < numF; ++i) {StyleFeature aFeat;aFeat.second.resize(fLen);std::string sline;getline(cin, sline);//以空格分開(kāi)int idxBlank = sline.find_first_of(" ");std::string sLabel = sline;//獲取標(biāo)簽;sLabel.erase(idxBlank, sLabel.length());responses.push_back(label);//aFeat.first = label = atoi(sLabel.c_str());std::string sFV = sline;sFV.erase(0, idxBlank + 1);//獲取一行,特征int idxFv = 0;float fV = 0.0;while (sFV.length() > 0 && idxFv < fLen) {int idxColon = sFV.find_first_of(":");std::string sv = sFV;std::strstream ssv;sv = sv.substr(idxColon + 1, sv.find_first_of(" ") - 2);ssv << sv;ssv >> fV;el_ptr.at<float>(i) = fV;//aFeat.second[idxFv] = fV;++idxFv;sFV.erase(0, sFV.find_first_of(" ") + 1);}_data->push_back(el_ptr);//trainData.push_back(aFeat);}fclose(stdin); cout << "The feature load over....." << endl;Mat(responses).copyTo(*_responses);return true;}
//準(zhǔn)備訓(xùn)練數(shù)據(jù)cv::Ptr<cv::ml::TrainData> prepare_train_data( const cv::Mat& data, const cv::Mat& responses, int ntrain_samples ){using namespace cv;Mat sample_idx = Mat::zeros(1, data.rows, CV_8U);Mat train_samples = sample_idx.colRange(0, ntrain_samples);train_samples.setTo(Scalar::all(1));int nvars = data.cols;Mat var_type(nvars + 1, 1, CV_8U);var_type.setTo(Scalar::all(ml::VAR_ORDERED));var_type.at<uchar>(nvars) = ml::VAR_CATEGORICAL;return ml::TrainData::create(data, ml::ROW_SAMPLE, responses, noArray(), sample_idx, noArray(), var_type);}
樣本結(jié)構(gòu): 0 1:211946 2:0 3:0 4:0 5:105 6:5693 7:34 8:0 9:0 10:0 11:25 12:12697 13:226916 14:1826 15:497 16:282 17:105 18:15 19:104 20:18 21:0 22:737 23:46979 24:17889 25:7121 26:6970 27:9441 28:12679 29:20890 30:37498 31:43568 32:27465 0 1:23544 2:210 3:11663 4:158 5:310 6:166 7:591 8:6131 9:193297 10:1985 11:1136 12:809 13:149069 14:33036 15:20045 16:11525 17:6552 18:2928 19:2590 20:1844 21:1305 22:11106 23:81817 24:29063 25:6654 26:5015 27:4916 28:8862 29:34762 30:44044 31:17409 32:7458 0 1:254596 2:0 3:65361 4:0 5:0 6:0 7:0 8:0 9:0 10:0 11:10 12:14033 13:333347 14:330 15:75 16:80 17:25 18:0 19:42 20:0 21:0 22:101 23:31990 24:66583 25:49191 26:59149 27:35800 28:25089 29:21463 30:18022 31:18409 32:8304 0 1:11697 2:2431 3:228 4:9 5:0 6:1 7:150 8:28 9:8413 10:9673 11:6345 12:6025 13:7695 14:8080 15:5689 16:6175 17:5146 18:4358 19:3246 20:2170 21:1478 22:963 23:2192 24:6866 25:7082 26:4273 27:3100 28:2733 29:2833 30:3265 31:3835 32:8821
總結(jié)
以上是生活随笔為你收集整理的OpenCV:使用OpenCV3随机森林进行统计特征多类分析的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: selenium使用ChromeDriv
- 下一篇: pycuda installation