日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

一阶线性常微分方程解法总结 Summary of Solving First Order Linear Ordinary Differential Equation (ODE)

發布時間:2023/12/29 编程问答 33 豆豆
生活随笔 收集整理的這篇文章主要介紹了 一阶线性常微分方程解法总结 Summary of Solving First Order Linear Ordinary Differential Equation (ODE) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

文章目錄

  • 1. Separable Differentiable Equations
  • 2. Linear Equations
    • First-order linear equation
      • Solution of the homogeneous equation
      • Solution of the inhomogeneous equation
        • An alternate solution -- Variation of parameters
      • Theorem -- Structure of the Solution
  • 3. Exact Differential Equations
    • Definition
    • Theorem
    • Solving Exact Differential Equation
      • Integrating Factors
      • Separable Equations
    • Homogenous Equations
      • Solve Homogenous Equations

1. Separable Differentiable Equations

dydt=g(t)h(y)ordydt=g(t)f(y)\frac{dy}{dt} = \frac{g(t)}{h(y)} \\ or \\ \frac{dy}{dt} = g(t)f(y) dtdy?=h(y)g(t)?ordtdy?=g(t)f(y)

  • Separate the variables
    h(y)dy=g(t)dtordyf(y)=g(t)dth(y)dy = g(t)dt \\ or \\ \frac{dy}{f(y)} = g(t)dt h(y)dy=g(t)dtorf(y)dy?=g(t)dt

  • Integrate both sides
    ∫h(y)dy=∫g(t)dtor∫dyf(y)=∫g(t)dt\int h(y)dy = \int g(t)dt \\ or \\ \int \frac{dy}{f(y)} = \int g(t)dt h(y)dy=g(t)dtorf(y)dy?=g(t)dt

  • Solve for the solution y(t), if possible

  • PS: For dyf(y)\frac{dy}{f(y)}f(y)dy?, if f(y)=0f(y)=0f(y)=0, then if f(y0)=0f(y_0)=0f(y0?)=0, y(t)=y0y(t)=y_0y(t)=y0? is a solution.

    2. Linear Equations

    First-order linear equation

    Form:
    x′=a(t)x+f(t)x' = a(t)x + f(t) x=a(t)x+f(t)
    Homogeneous if f(t)=0f(t)=0f(t)=0, form:
    x′=a(t)xx' = a(t)x x=a(t)x
    a(t),f(t)a(t), f(t)a(t),f(t) are called coefficients of the equation.

    Solution of the homogeneous equation

    dxx=a(t)dt?ln∣x∣=∫a(t)dt+C∣x∣=e∫a(t)dt+C=eCe∫a(t)dt\frac{dx}{x} = a(t)dt \qquad \Longrightarrow \qquad ln|x| = \int a(t)dt + C \\ |x| = e^{\int a(t)dt + C} = e^C e^{\int a(t)dt} xdx?=a(t)dt?lnx=a(t)dt+Cx=ea(t)dt+C=eCea(t)dt

    Let AAA be a constant, which can be either >0, <0 or =0
    x(t)=Ae∫a(t)dtx(t) = Ae^{\int a(t)dt} x(t)=Aea(t)dt

    Solution of the inhomogeneous equation

    The equation
    x′=ax+fx' = ax + f x=ax+f

  • Rewrite the equation as
    x′?ax=fx' - ax = f x?ax=f

  • Multiply by the integrating factor
    u(t)=e?∫a(t)dtu(t) = e^{-\int a(t)dt} u(t)=e?a(t)dt
    So that the equation becomes
    (ux)′=u(x′?ax)=uf(ux)' = u(x' - ax) =uf (ux)=u(x?ax)=uf

  • Integrate this equation
    u(t)x(t)=∫u(t)f(t)dt+Cu(t)x(t) = \int u(t)f(t)dt + C u(t)x(t)=u(t)f(t)dt+C

  • Solve for x(t)

  • An alternate solution – Variation of parameters

    The equation
    y′=ay+fy' = ay + f y=ay+f

  • Get a partialicular solution to the homogeneous equation yh′=ayhy_h' = ay_hyh?=ayh?
    yh(t)=e∫a(t)dty_h(t) = e^{\int a(t)dt} yh?(t)=ea(t)dt

  • Substitute y=vyhy = vy_hy=vyh? into the inhomogeneous equation to find v, or remember that
    v′=fyhv' = \frac{f}{y_h} v=yh?f?
    And solve vvv

  • Write the v into the general solution y=vyhy = vy_hy=vyh?

  • Theorem – Structure of the Solution

    Every solution to the inhomogeneous equation is of the form
    y(t)=yp(t)+Ayh(t)y(t) = y_p(t) + Ay_h(t) y(t)=yp?(t)+Ayh?(t)
    Where AAA is an arbitrary constant,

    ypy_pyp? is a partialicular solution to the inhomogeneous equation y′=a(t)y+f(t)y' = a(t)y + f(t)y=a(t)y+f(t),

    and yhy_hyh? is a partialicular solution to the associated homogeneous equation y′=a(t)yy' = a(t)yy=a(t)y.

    3. Exact Differential Equations

    Definition

    The differential of a continuously differentiable function F is the differential form
    dF=?F?xdx+?F?ydydF= \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy dF=?x?F?dx+?y?F?dy
    A differential form is said to be exact if it is the differential of a continuously differentiable function.

    Theorem

    Let ω=P(x,y)dx+Q(x,y)dy\omega = P(x,y)dx + Q(x,y)dyω=P(x,y)dx+Q(x,y)dy be a differential form where both P and Q are continuous and differentiable

    (a) if ω\omegaω is exact, then
    ?P?y=?Q?x\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} ?y?P?=?x?Q?
    (b) if (a) is true in a rectangle R, then ω\omegaω is exact in R

    Solving Exact Differential Equation

    If the equation P(x,y)dx+Q(x,y)dy=0P(x, y)dx + Q(x, y)dy = 0P(x,y)dx+Q(x,y)dy=0 is exact, the solution is given by F(x,y)=CF(x, y) = CF(x,y)=C, where F is found by

  • Solve ?F?x=P\frac{\partial F}{\partial x} = P?x?F?=P by integration:
    F(x,y)=∫P(x,y)dx+?(y)F(x, y) = \int P(x, y)dx + \phi (y) F(x,y)=P(x,y)dx+?(y)

  • Solve ?F?y=Q\frac{\partial F}{\partial y} = Q?y?F?=Q
    ?F?y=??y∫P(x,y)dx+?′(y)=Q(x,y)\frac{\partial F}{\partial y} = \frac{\partial}{\partial y} \int P(x, y)dx + \phi'(y) = Q(x, y) ?y?F?=?y??P(x,y)dx+?(y)=Q(x,y)

  • Integrating Factors

    The form Pdx+QdyPdx + QdyPdx+Qdy has an integrating factor depending on one of the variables under the following conditions.

    • If
      h=1Q(?P?y??Q?x)h = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) h=Q1?(?y?P???x?Q?)
      is a function of x only, then μ(x)=e∫h(x)dx\mu (x) = e^{\int h(x)dx}μ(x)=eh(x)dx is an integrating factor.

    • If
      g=1P(?P?y??Q?x)g = \frac{1}{P} (\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}) g=P1?(?y?P???x?Q?)
      is a function of y only, then μ(y)=e?∫g(y)dy\mu(y) = e^{-\int g(y)dy}μ(y)=e?g(y)dy is an integrating factor.

    Separable Equations

    If the equation has the form
    P(x)dx+Q(y)dy=0P(x)dx + Q(y)dy = 0 P(x)dx+Q(y)dy=0
    The solution is given by
    F(x,y)=∫P(X)dx+∫Q(y)dy=CF(x, y) = \int P(X)dx + \int Q(y)dy = C F(x,y)=P(X)dx+Q(y)dy=C

    Homogenous Equations

    A function G(x, y) is homogenous of degree n if
    G(tx,ty)=tnG(x,y)G(tx, ty) = t^nG(x, y) G(tx,ty)=tnG(x,y)
    A differential equation Pdx+Qdy=0Pdx + Qdy = 0Pdx+Qdy=0 is said to be homogenous if both of the coefficients P and Q are homogeneous of the same degree

    Solve Homogenous Equations

    Substitute y = xv

    Then P(x,y)dx+Q(x,y)dy=0P(x, y)dx + Q(x, y)dy = 0P(x,y)dx+Q(x,y)dy=0 turns into P(x,xv)dx+Q(x,xv)(vdx+xdv)=0P(x, xv)dx + Q(x, xv)(vdx + xdv) = 0P(x,xv)dx+Q(x,xv)(vdx+xdv)=0
    P(x,xv)=xnP(1,v)Q(x,xv)=xnQ(1,v)P(x, xv) = x^nP(1, v)\\ Q(x, xv) = x^nQ(1, v) P(x,xv)=xnP(1,v)Q(x,xv)=xnQ(1,v)
    Dividing xnx^nxn, and collecting terms
    (P(1,v)+vQ(1,v))dx+xQ(1,v)dv=0(P(1, v) + vQ(1, v))dx + xQ(1, v)dv = 0 (P(1,v)+vQ(1,v))dx+xQ(1,v)dv=0
    The integrating factor is
    1x(P(1,v)+vQ(1,v))\frac{1}{x(P(1, v) + vQ(1, v))} x(P(1,v)+vQ(1,v))1?
    Separate variables, and solve the equation
    dxx+Q(1,v)dvP(1,v)+vQ(1,v)=0\frac{dx}{x} + \frac{Q(1, v)dv}{P(1, v) + vQ(1, v)} = 0 xdx?+P(1,v)+vQ(1,v)Q(1,v)dv?=0

    總結

    以上是生活随笔為你收集整理的一阶线性常微分方程解法总结 Summary of Solving First Order Linear Ordinary Differential Equation (ODE)的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。