日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Feed机制

發(fā)布時間:2023/12/20 编程问答 31 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Feed机制 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

Feed

上述示例在計算圖中引入了 tensor, 以常量或變量的形式存儲. TensorFlow 還提供了 feed 機制, 該機制 可以臨時替代圖中的任意操作中的 tensor 可以對圖中任何操作提交補丁, 直接插入一個 tensor.

feed 使用一個 tensor 值臨時替換一個操作的輸出結果. 你可以提供 feed 數(shù)據(jù)作為?run()?調用的參數(shù). feed 只在調用它的方法內有效, 方法結束, feed 就會消失. 最常見的用例是將某些特殊的操作指定為 "feed" 操作, 標記的方法是使用 tf.placeholder() 為這些操作創(chuàng)建占位符.

input1 = tf.placeholder(tf.types.float32) input2 = tf.placeholder(tf.types.float32) output = tf.mul(input1, input2)with tf.Session() as sess:print sess.run([output], feed_dict={input1:[7.], input2:[2.]})# 輸出: # [array([ 14.], dtype=float32)]

總結

以上是生活随笔為你收集整理的Feed机制的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內容還不錯,歡迎將生活随笔推薦給好友。