日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪(fǎng)問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

【优化求解-单目标求解】基于黑猩猩算法求解单目标问题matlab源码

發(fā)布時(shí)間:2023/12/20 编程问答 29 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【优化求解-单目标求解】基于黑猩猩算法求解单目标问题matlab源码 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

一、黑猩猩算法

This article proposes a novel metaheuristic algorithm called Chimp Optimization Algorithm (ChOA) inspired by the individual intelligence and sexual motivation of chimps in their group hunting, which is different from the other social predators. ChOA is designed to further alleviate the two problems of slow convergence speed and trapping in local optima in solving high-dimensional problems. In this article, a mathematical model of diverse intelligence and sexual motivation is proposed. Four types of chimps entitled attacker, barrier, chaser, and driver are employed for simulating the diverse intelligence. Moreover, the four main steps of hunting, driving, blocking, and attacking, are implemented. Afterward, the algorithm is tested on 30 well-known benchmark functions, and the results are compared to four newly proposed meta-heuristic algorithms in term of convergence speed, the probability of getting stuck in local minimums, and the accuracy of obtained results. The results indicate that the ChOA outperforms the other benchmark optimization algorithms.

二、部分代碼

%___________________________________________________________________% % Chimp Optimization Algorithm (ChOA) source codes version 1.0 ?? % By: M. Khishe, M. R. Musavi % m_khishe@alumni.iust.ac.ir %For more information please refer to the following papers: % M. Khishe, M. R. Mosavi, 揅himp Optimization Algorithm,�Expert Systems % With Applications, 2020. % Please note that some files and functions are taken from the GWO algorithm % such as: Get_Functions_details, PSO, ? % For more information please refer to the following papers: % Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in engineering software, 69, 46-61. ? ? ? ? ? % %___________________________________________________________________%% You can simply define your cost in a seperate file and load its handle to fobj? % The initial parameters that you need are: %__________________________________________ % fobj = @YourCostFunction % dim = number of your variables % Max_iteration = maximum number of generations % SearchAgents_no = number of search agents % lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n % ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n % If all the variables have equal lower bound you can just % define lb and ub as two single number numbers% %__________________________________________clear all? clcSearchAgents_no=30; % Number of search agents N=SearchAgents_no; Function_name='F2'; % Name of the test function that can be from F1 to F23 (Table 3,4,5 in the paper)Max_iteration=500; % Maximum numbef of iterations Max_iter=Max_iteration;% Load details of the selected benchmark function [lb,ub,dim,fobj]=Get_Functions_details(Function_name);[ABest_scoreChimp,ABest_posChimp,Chimp_curve]=Chimp(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); [PSO_gBestScore,PSO_gBest,PSO_cg_curve]=PSO(N,Max_iteration,lb,ub,dim,fobj); [TACPSO_gBestScore,TACPSO_gBest,TACPSO_cg_curve]=TACPSO(N,Max_iteration,lb,ub,dim,fobj); [MPSO_gBestScore,MPSO_gBest,MPSO_cg_curve]=MPSO(N,Max_iteration,lb,ub,dim,fobj);% PSO_cg_curve=PSO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); % run PSO to compare to resultsfigure('Position',[500 500 660 290]) %Draw search space subplot(1,2,1); func_plot(Function_name); title('Parameter space') xlabel('x_1'); ylabel('x_2'); zlabel([Function_name,'( x_1 , x_2 )'])%Draw objective space subplot(1,2,2); semilogy(MPSO_cg_curve,'Color','g') hold on semilogy(PSO_cg_curve,'Color','b') hold on semilogy(TACPSO_cg_curve,'Color','y') hold on semilogy(Chimp_curve,'--r')title('Objective space') xlabel('Iteration'); ylabel('Best score obtained so far');axis tight grid on box on legend('MPSO','PSO','TACPSO','Chimp')display(['The best optimal value of the objective funciton found by TACPSO is : ', num2str(TACPSO_gBestScore)]); display(['The best optimal value of the objective funciton found by PSO is : ', num2str(PSO_gBestScore)]); display(['The best optimal value of the objective funciton found by PSO is : ', num2str(MPSO_gBestScore)]); display(['The best optimal value of the objective funciton found by Chimp is : ', num2str(ABest_scoreChimp)]);

三、仿真結(jié)果

四、參考文獻(xiàn)

Khishe, M., and M. R. Mosavi. “Chimp Optimization Algorithm.” Expert Systems with Applications, vol. 149, Elsevier BV, July 2020, p. 113338, doi:10.1016/j.eswa.2020.113338.

5 MATLAB代碼與數(shù)據(jù)下載地址

見(jiàn)博客主頁(yè)頭條

?

總結(jié)

以上是生活随笔為你收集整理的【优化求解-单目标求解】基于黑猩猩算法求解单目标问题matlab源码的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。