日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > 循环神经网络 >内容正文

循环神经网络

NS方程由精确解求源项matlab代码

發布時間:2023/12/20 循环神经网络 32 豆豆
生活随笔 收集整理的這篇文章主要介紹了 NS方程由精确解求源项matlab代码 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

有時候在NS方程中我們需要構造有精確解的例子去測試格式的精度,這時候往往都是先給出精確解的表達式,然后帶入原NS方程求出源項。如何求這個源項呢,對于可壓流NS方程來說手動求導數會很麻煩。所以,這里我們用matlab符號計算來求源項。

clear all syms x y u1 u2 u3 u4 pressure gamma txx txy tyx tyy mu Pr kTx kTy %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%各變量定義%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %x x方向坐標 %y y方向坐標 %u1 密度 %u2 x方向動量 %u3 y方向動量 %u4 總能 %pressure 壓強 %gamma 氣體常數 %txx txy tyx tyy 粘性應力張量 %mu 粘性系數 %Pr Prandtl數 %kTx $\kappa T_x$ %kTy $\kappa T_y$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u1 = sin(2*(x+y)) + 4; u2 = sin(2*(x+y)) + 4; u3 = sin(2*(x+y)) + 4; u4 = (sin(2*(x+y)) + 4)^2;pressure = (gamma - 1)*(u4 - 0.5*(u2^2+u3^2)/u1); txx = 2.0/3.0 * mu * (2*diff(u2/u1,x)-diff(u3/u1,y)); txy = mu*(diff(u2/u1,y)+diff(u3/u1,x)); tyx = mu*(diff(u3/u1,x)+diff(u2/u1,y)); tyy = 2.0/3.0*mu*(2*diff(u3/u1,y)-diff(u2/u1,x)); kT = mu * gamma / Pr *(u4/u1-0.5*(u2^2+u3^2)/(u1*u1)); kTx = diff(kT,x); kTy = diff(kT,y);f1x = u2; f1y = u3; g1x = 0; g1y = 0;f2x = u2^2/u1 + pressure; f2y = u2*u3/u1; g2x = txx; g2y = txy;f3x = u2*u3/u1; f3y = u3^2/u1 + pressure; g3x = txy; g3y = tyy;f4x = u2/u1*(u4+pressure); f4y = u3/u1*(u4+pressure); g4x = u2/u1*txx + u3/u1*txy + kTx; g4y = u2/u1*txy + u3/u1*tyy + kTy;d1 = diff(f1x,x) + diff(f1y,y) - diff(g1x,x) - diff(g1y,y); d2 = diff(f2x,x) + diff(f2y,y) - diff(g2x,x) - diff(g2y,y); d3 = diff(f3x,x) + diff(f3y,y) - diff(g3x,x) - diff(g3y,y); d4 = diff(f4x,x) + diff(f4y,y) - diff(g4x,x) - diff(g4y,y);d1 = simplify(d1) d2 = simplify(d2) d3 = simplify(d3) d4 = simplify(d4)

轉載于:https://www.cnblogs.com/yuehq/p/5411957.html

總結

以上是生活随笔為你收集整理的NS方程由精确解求源项matlab代码的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。