日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

HIVE攻略 JFK_Hive安装及使用攻略

發(fā)布時(shí)間:2023/12/20 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 HIVE攻略 JFK_Hive安装及使用攻略 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

目錄Hive的安裝

Hive的基本使用:CRUD

Hive交互式模式

數(shù)據(jù)導(dǎo)入

數(shù)據(jù)導(dǎo)出

Hive查詢HiveQL

Hive視圖

Hive分區(qū)表

1. Hive的安裝

系統(tǒng)環(huán)境裝好hadoop的環(huán)境后,我們可以把Hive裝在namenode機(jī)器上(c1)。hadoop的環(huán)境,請(qǐng)參考:讓Hadoop跑在云端系列文章,RHadoop實(shí)踐系列之一:Hadoop環(huán)境搭建

下載: hive-0.9.0.tar.gz解壓到: /home/cos/toolkit/hive-0.9.0

hive配置~ cd /home/cos/toolkit/hive-0.9.0

~ cp hive-default.xml.template hive-site.xml

~ cp hive-log4j.properties.template hive-log4j.properties

修改hive-site.xml配置文件把Hive的元數(shù)據(jù)存儲(chǔ)到MySQL中~ vi conf/hive-site.xml

javax.jdo.option.ConnectionURL

jdbc:mysql://c1:3306/hive_metadata?createDatabaseIfNotExist=true

JDBC connect string for a JDBC metastore

javax.jdo.option.ConnectionDriverName

com.mysql.jdbc.Driver

Driver class name for a JDBC metastore

javax.jdo.option.ConnectionUserName

hive

username to use against metastore database

javax.jdo.option.ConnectionPassword

hive

password to use against metastore database

hive.metastore.warehouse.dir

/user/hive/warehouse

location of default database for the warehouse

修改hive-log4j.properties#log4j.appender.EventCounter=org.apache.hadoop.metrics.jvm.EventCounter

log4j.appender.EventCounter=org.apache.hadoop.log.metrics.EventCounter

設(shè)置環(huán)境變量~ sudo vi /etc/environment

PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/home/cos/toolkit/ant184/bin:/home/cos/toolkit/jdk16/bin:/home/cos/toolkit/maven3/bin:/home/cos/toolkit/hadoop-1.0.3/bin:/home/cos/toolkit/hive-0.9.0/bin"

JAVA_HOME=/home/cos/toolkit/jdk16

ANT_HOME=/home/cos/toolkit/ant184

MAVEN_HOME=/home/cos/toolkit/maven3

HADOOP_HOME=/home/cos/toolkit/hadoop-1.0.3

HIVE_HOME=/home/cos/toolkit/hive-0.9.0

CLASSPATH=/home/cos/toolkit/jdk16/lib/dt.jar:/home/cos/toolkit/jdk16/lib/tools.jar

在hdfs上面,創(chuàng)建目錄$HADOOP_HOME/bin/hadoop fs -mkidr /tmp

$HADOOP_HOME/bin/hadoop fs -mkidr /user/hive/warehouse

$HADOOP_HOME/bin/hadoop fs -chmod g+w /tmp

$HADOOP_HOME/bin/hadoop fs -chmod g+w /user/hive/warehouse

在MySQL中創(chuàng)建數(shù)據(jù)庫(kù)create database hive_metadata;

grant all on hive_metadata.* to hive@'%' identified by 'hive';

grant all on hive_metadata.* to hive@localhost identified by 'hive';

ALTER DATABASE hive_metadata CHARACTER SET latin1;

手動(dòng)上傳mysql的jdbc庫(kù)到hive/lib~ ls /home/cos/toolkit/hive-0.9.0/lib

mysql-connector-java-5.1.22-bin.jar

啟動(dòng)hive#啟動(dòng)metastore服務(wù)

~ bin/hive --service metastore &

Starting Hive Metastore Server

#啟動(dòng)hiveserver服務(wù)

~ bin/hive --service hiveserver &

Starting Hive Thrift Server

#啟動(dòng)hive客戶端

~ bin/hive shell

Logging initialized using configuration in file:/root/hive-0.9.0/conf/hive-log4j.properties

Hive history file=/tmp/root/hive_job_log_root_201211141845_1864939641.txt

hive> show tables

OK

查詢MySQL數(shù)據(jù)庫(kù)中的元數(shù)據(jù)~ mysql -uroot -p

mysql> use hive_metadata;

Database changed

mysql> show tables;

+-------------------------+

| Tables_in_hive_metadata |

+-------------------------+

| BUCKETING_COLS |

| CDS |

| COLUMNS_V2 |

| DATABASE_PARAMS |

| DBS |

| IDXS |

| INDEX_PARAMS |

| PARTITIONS |

| PARTITION_KEYS |

| PARTITION_KEY_VALS |

| PARTITION_PARAMS |

| PART_COL_PRIVS |

| PART_PRIVS |

| SDS |

| SD_PARAMS |

| SEQUENCE_TABLE |

| SERDES |

| SERDE_PARAMS |

| SORT_COLS |

| TABLE_PARAMS |

| TBLS |

| TBL_COL_PRIVS |

| TBL_PRIVS |

+-------------------------+

23 rows in set (0.00 sec)

Hive已經(jīng)成功安裝,下面是hive的使用攻略。

2. Hive的基本使用

1. 進(jìn)入hive控制臺(tái)~ cd /home/cos/toolkit/hive-0.9.0

~ bin/hive shell

Logging initialized using configuration in file:/home/cos/toolkit/hive-0.9.0/conf/hive-log4j.properties

Hive history file=/tmp/cos/hive_job_log_cos_201307160003_95040367.txt

hive>

新建表#創(chuàng)建數(shù)據(jù)(文本以tab分隔)

~ vi /home/cos/demo/t_hive.txt

16 2 3

61 12 13

41 2 31

17 21 3

71 2 31

1 12 34

11 2 34

#創(chuàng)建新表

hive> CREATE TABLE t_hive (a int, b int, c int) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

OK

Time taken: 0.489 seconds

#導(dǎo)入數(shù)據(jù)t_hive.txt到t_hive表

hive> LOAD DATA LOCAL INPATH '/home/cos/demo/t_hive.txt' OVERWRITE INTO TABLE t_hive ;

Copying data from file:/home/cos/demo/t_hive.txt

Copying file: file:/home/cos/demo/t_hive.txt

Loading data to table default.t_hive

Deleted hdfs://c1.wtmart.com:9000/user/hive/warehouse/t_hive

OK

Time taken: 0.397 seconds

查看表和數(shù)據(jù)#查看表

hive> show tables;

OK

t_hive

Time taken: 0.099 seconds

#正則匹配表名

hive>show tables '*t*';

OK

t_hive

Time taken: 0.065 seconds

#查看表數(shù)據(jù)

hive> select * from t_hive;

OK

16 2 3

61 12 13

41 2 31

17 21 3

71 2 31

1 12 34

11 2 34

Time taken: 0.264 seconds

#查看表結(jié)構(gòu)

hive> desc t_hive;

OK

a int

b int

c int

Time taken: 0.1 seconds

修改表#增加一個(gè)字段

hive> ALTER TABLE t_hive ADD COLUMNS (new_col String);

OK

Time taken: 0.186 seconds

hive> desc t_hive;

OK

a int

b int

c int

new_col string

Time taken: 0.086 seconds

#重命令表名

~ ALTER TABLE t_hive RENAME TO t_hadoop;

OK

Time taken: 0.45 seconds

hive> show tables;

OK

t_hadoop

Time taken: 0.07 seconds

刪除表hive> DROP TABLE t_hadoop;

OK

Time taken: 0.767 seconds

hive> show tables;

OK

Time taken: 0.064 seconds

3. Hive交互式模式quit,exit: ?退出交互式shell

reset: 重置配置為默認(rèn)值

set =: 修改特定變量的值(如果變量名拼寫(xiě)錯(cuò)誤,不會(huì)報(bào)錯(cuò))

set?:? 輸出用戶覆蓋的hive配置變量

set -v : 輸出所有Hadoop和Hive的配置變量

add FILE[S] *,?add JAR[S] *,?add ARCHIVE[S] * : 添加 一個(gè)或多個(gè) file, jar, archives到分布式緩存

list FILE[S],?list JAR[S],?list ARCHIVE[S] : 輸出已經(jīng)添加到分布式緩存的資源。

list FILE[S] *,?list JAR[S] *,list ARCHIVE[S] * : 檢查給定的資源是否添加到分布式緩存

delete FILE[S] *,delete JAR[S] *,delete ARCHIVE[S] * : 從分布式緩存刪除指定的資源

! :??從Hive shell執(zhí)行一個(gè)shell命令

dfs : ?從Hive shell執(zhí)行一個(gè)dfs命令

: 執(zhí)行一個(gè)Hive 查詢,然后輸出結(jié)果到標(biāo)準(zhǔn)輸出

source FILE : ?在CLI里執(zhí)行一個(gè)hive腳本文件

4. 數(shù)據(jù)導(dǎo)入

還以剛才的t_hive為例。#創(chuàng)建表結(jié)構(gòu)

hive> CREATE TABLE t_hive (a int, b int, c int) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

從操作本地文件系統(tǒng)加載數(shù)據(jù)(LOCAL)hive> LOAD DATA LOCAL INPATH '/home/cos/demo/t_hive.txt' OVERWRITE INTO TABLE t_hive ;

Copying data from file:/home/cos/demo/t_hive.txt

Copying file: file:/home/cos/demo/t_hive.txt

Loading data to table default.t_hive

Deleted hdfs://c1.wtmart.com:9000/user/hive/warehouse/t_hive

OK

Time taken: 0.612 seconds

#在HDFS中查找剛剛導(dǎo)入的數(shù)據(jù)

~ hadoop fs -cat /user/hive/warehouse/t_hive/t_hive.txt

16 2 3

61 12 13

41 2 31

17 21 3

71 2 31

1 12 34

11 2 34

從HDFS加載數(shù)據(jù)創(chuàng)建表t_hive2

hive> CREATE TABLE t_hive2 (a int, b int, c int) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

#從HDFS加載數(shù)據(jù)

hive> LOAD DATA INPATH '/user/hive/warehouse/t_hive/t_hive.txt' OVERWRITE INTO TABLE t_hive2;

Loading data to table default.t_hive2

Deleted hdfs://c1.wtmart.com:9000/user/hive/warehouse/t_hive2

OK

Time taken: 0.325 seconds

#查看數(shù)據(jù)

hive> select * from t_hive2;

OK

16 2 3

61 12 13

41 2 31

17 21 3

71 2 31

1 12 34

11 2 34

Time taken: 0.287 seconds

從其他表導(dǎo)入數(shù)據(jù)hive> INSERT OVERWRITE TABLE t_hive2 SELECT * FROM t_hive ;

Total MapReduce jobs = 2

Launching Job 1 out of 2

Number of reduce tasks is set to 0 since there's no reduce operator

Starting Job = job_201307131407_0002, Tracking URL = http://c1.wtmart.com:50030/jobdetails.jsp?jobid=job_201307131407_0002

Kill Command = /home/cos/toolkit/hadoop-1.0.3/libexec/../bin/hadoop job -Dmapred.job.tracker=hdfs://c1.wtmart.com:9001 -kill job_201307131407_0002

Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0

2013-07-16 10:32:41,979 Stage-1 map = 0%, reduce = 0%

2013-07-16 10:32:48,034 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.03 sec

2013-07-16 10:32:49,050 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.03 sec

2013-07-16 10:32:50,068 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.03 sec

2013-07-16 10:32:51,082 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.03 sec

2013-07-16 10:32:52,093 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.03 sec

2013-07-16 10:32:53,102 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.03 sec

2013-07-16 10:32:54,112 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 1.03 sec

MapReduce Total cumulative CPU time: 1 seconds 30 msec

Ended Job = job_201307131407_0002

Ended Job = -314818888, job is filtered out (removed at runtime).

Moving data to: hdfs://c1.wtmart.com:9000/tmp/hive-cos/hive_2013-07-16_10-32-31_323_5732404975764014154/-ext-10000

Loading data to table default.t_hive2

Deleted hdfs://c1.wtmart.com:9000/user/hive/warehouse/t_hive2

Table default.t_hive2 stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 56, raw_data_size: 0]

7 Rows loaded to t_hive2

MapReduce Jobs Launched:

Job 0: Map: 1 Cumulative CPU: 1.03 sec HDFS Read: 273 HDFS Write: 56 SUCCESS

Total MapReduce CPU Time Spent: 1 seconds 30 msec

OK

Time taken: 23.227 seconds

hive> select * from t_hive2;

OK

16 2 3

61 12 13

41 2 31

17 21 3

71 2 31

1 12 34

11 2 34

Time taken: 0.134 seconds

創(chuàng)建表并從其他表導(dǎo)入數(shù)據(jù)#刪除表

hive> DROP TABLE t_hive;

#創(chuàng)建表并從其他表導(dǎo)入數(shù)據(jù)

hive> CREATE TABLE t_hive AS SELECT * FROM t_hive2 ;

Total MapReduce jobs = 2

Launching Job 1 out of 2

Number of reduce tasks is set to 0 since there's no reduce operator

Starting Job = job_201307131407_0003, Tracking URL = http://c1.wtmart.com:50030/jobdetails.jsp?jobid=job_201307131407_0003

Kill Command = /home/cos/toolkit/hadoop-1.0.3/libexec/../bin/hadoop job -Dmapred.job.tracker=hdfs://c1.wtmart.com:9001 -kill job_201307131407_0003

Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0

2013-07-16 10:36:48,612 Stage-1 map = 0%, reduce = 0%

2013-07-16 10:36:54,648 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.13 sec

2013-07-16 10:36:55,657 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.13 sec

2013-07-16 10:36:56,666 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.13 sec

2013-07-16 10:36:57,673 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.13 sec

2013-07-16 10:36:58,683 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.13 sec

2013-07-16 10:36:59,691 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 1.13 sec

MapReduce Total cumulative CPU time: 1 seconds 130 msec

Ended Job = job_201307131407_0003

Ended Job = -670956236, job is filtered out (removed at runtime).

Moving data to: hdfs://c1.wtmart.com:9000/tmp/hive-cos/hive_2013-07-16_10-36-39_986_1343249562812540343/-ext-10001

Moving data to: hdfs://c1.wtmart.com:9000/user/hive/warehouse/t_hive

Table default.t_hive stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 56, raw_data_size: 0]

7 Rows loaded to hdfs://c1.wtmart.com:9000/tmp/hive-cos/hive_2013-07-16_10-36-39_986_1343249562812540343/-ext-10000

MapReduce Jobs Launched:

Job 0: Map: 1 Cumulative CPU: 1.13 sec HDFS Read: 272 HDFS Write: 56 SUCCESS

Total MapReduce CPU Time Spent: 1 seconds 130 msec

OK

Time taken: 20.13 seconds

hive> select * from t_hive;

OK

16 2 3

61 12 13

41 2 31

17 21 3

71 2 31

1 12 34

11 2 34

Time taken: 0.109 seconds

僅復(fù)制表結(jié)構(gòu)不導(dǎo)數(shù)據(jù)hive> CREATE TABLE t_hive3 LIKE t_hive;

hive> select * from t_hive3;

OK

Time taken: 0.077 seconds

從MySQL數(shù)據(jù)庫(kù)導(dǎo)入數(shù)據(jù)我們將在介紹Sqoop時(shí)講。

5. 數(shù)據(jù)導(dǎo)出

從HDFS復(fù)制到HDFS其他位置~ hadoop fs -cp /user/hive/warehouse/t_hive /

~ hadoop fs -ls /t_hive

Found 1 items

-rw-r--r-- 1 cos supergroup 56 2013-07-16 10:41 /t_hive/000000_0

~ hadoop fs -cat /t_hive/000000_0

1623

611213

41231

17213

71231

11234

11234

通過(guò)Hive導(dǎo)出到本地文件系統(tǒng)hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/t_hive' SELECT * FROM t_hive;

Total MapReduce jobs = 1

Launching Job 1 out of 1

Number of reduce tasks is set to 0 since there's no reduce operator

Starting Job = job_201307131407_0005, Tracking URL = http://c1.wtmart.com:50030/jobdetails.jsp?jobid=job_201307131407_0005

Kill Command = /home/cos/toolkit/hadoop-1.0.3/libexec/../bin/hadoop job -Dmapred.job.tracker=hdfs://c1.wtmart.com:9001 -kill job_201307131407_0005

Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0

2013-07-16 10:46:24,774 Stage-1 map = 0%, reduce = 0%

2013-07-16 10:46:30,823 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.87 sec

2013-07-16 10:46:31,833 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.87 sec

2013-07-16 10:46:32,844 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.87 sec

2013-07-16 10:46:33,856 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.87 sec

2013-07-16 10:46:34,865 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.87 sec

2013-07-16 10:46:35,873 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.87 sec

2013-07-16 10:46:36,884 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 0.87 sec

MapReduce Total cumulative CPU time: 870 msec

Ended Job = job_201307131407_0005

Copying data to local directory /tmp/t_hive

Copying data to local directory /tmp/t_hive

7 Rows loaded to /tmp/t_hive

MapReduce Jobs Launched:

Job 0: Map: 1 Cumulative CPU: 0.87 sec HDFS Read: 271 HDFS Write: 56 SUCCESS

Total MapReduce CPU Time Spent: 870 msec

OK

Time taken: 23.369 seconds

#查看本地操作系統(tǒng)

hive> ! cat /tmp/t_hive/000000_0;

hive> 1623

611213

41231

17213

71231

11234

11234

6. Hive查詢HiveQL

注:以下代碼將去掉map,reduce的日志輸出部分。

普通查詢:排序,列別名,嵌套子查詢hive> FROM (

> SELECT b,c as c2 FROM t_hive

> ) t

> SELECT t.b, t.c2

> WHERE b>2

> LIMIT 2;

12 13

21 3

連接查詢:JOINhive> SELECT t1.a,t1.b,t2.a,t2.b

> FROM t_hive t1 JOIN t_hive2 t2 on t1.a=t2.a

> WHERE t1.c>10;

1 12 1 12

11 2 11 2

41 2 41 2

61 12 61 12

71 2 71 2

聚合查詢1:count, avghive> SELECT count(*), avg(a) FROM t_hive;

7 31.142857142857142

聚合查詢2:count, distincthive> SELECT count(DISTINCT b) FROM t_hive;

3

聚合查詢3:GROUP BY, HAVING#GROUP BY

hive> SELECT avg(a),b,sum(c) FROM t_hive GROUP BY b,c

16.0 2 3

56.0 2 62

11.0 2 34

61.0 12 13

1.0 12 34

17.0 21 3

#HAVING

hive> SELECT avg(a),b,sum(c) FROM t_hive GROUP BY b,c HAVING sum(c)>30

56.0 2 62

11.0 2 34

1.0 12 34

7. Hive視圖

Hive視圖和數(shù)據(jù)庫(kù)視圖的概念是一樣的,我們還以t_hive為例。hive> CREATE VIEW v_hive AS SELECT a,b FROM t_hive where c>30;

hive> select * from v_hive;

41 2

71 2

1 12

11 2

刪除視圖hive> DROP VIEW IF EXISTS v_hive;

OK

Time taken: 0.495 seconds

8. Hive分區(qū)表

分區(qū)表是數(shù)據(jù)庫(kù)的基本概念,但很多時(shí)候數(shù)據(jù)量不大,我們完全用不到分區(qū)表。Hive是一種OLAP數(shù)據(jù)倉(cāng)庫(kù)軟件,涉及的數(shù)據(jù)量是非常大的,所以分區(qū)表在這個(gè)場(chǎng)景就顯得非常重要!!

下面我們重新定義一個(gè)數(shù)據(jù)表結(jié)構(gòu):t_hft

創(chuàng)建數(shù)據(jù)~ vi /home/cos/demo/t_hft_20130627.csv

000001,092023,9.76

000002,091947,8.99

000004,092002,9.79

000005,091514,2.2

000001,092008,9.70

000001,092059,9.45

~ vi /home/cos/demo/t_hft_20130628.csv

000001,092023,9.76

000002,091947,8.99

000004,092002,9.79

000005,091514,2.2

000001,092008,9.70

000001,092059,9.45

創(chuàng)建數(shù)據(jù)表DROP TABLE IF EXISTS t_hft;

CREATE TABLE t_hft(

SecurityID STRING,

tradeTime STRING,

PreClosePx DOUBLE

) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

創(chuàng)建分區(qū)數(shù)據(jù)表根據(jù)業(yè)務(wù):按天和股票ID進(jìn)行分區(qū)設(shè)計(jì)DROP TABLE IF EXISTS t_hft;

CREATE TABLE t_hft(

SecurityID STRING,

tradeTime STRING,

PreClosePx DOUBLE

) PARTITIONED BY (tradeDate INT)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

導(dǎo)入數(shù)據(jù)#20130627

hive> LOAD DATA LOCAL INPATH '/home/cos/demo/t_hft_20130627.csv' OVERWRITE INTO TABLE t_hft PARTITION (tradeDate=20130627);

Copying data from file:/home/cos/demo/t_hft_20130627.csv

Copying file: file:/home/cos/demo/t_hft_20130627.csv

Loading data to table default.t_hft partition (tradedate=20130627)

#20130628

hive> LOAD DATA LOCAL INPATH '/home/cos/demo/t_hft_20130628.csv' OVERWRITE INTO TABLE t_hft PARTITION (tradeDate=20130628);

Copying data from file:/home/cos/demo/t_hft_20130628.csv

Copying file: file:/home/cos/demo/t_hft_20130628.csv

Loading data to table default.t_hft partition (tradedate=20130628)

查看分區(qū)表hive> SHOW PARTITIONS t_hft;

tradedate=20130627

tradedate=20130628

Time taken: 0.082 seconds

查詢數(shù)據(jù)hive> select * from t_hft where securityid='000001';

000001 092023 9.76 20130627

000001 092008 9.7 20130627

000001 092059 9.45 20130627

000001 092023 9.76 20130628

000001 092008 9.7 20130628

000001 092059 9.45 20130628

hive> select * from t_hft where tradedate=20130627 and PreClosePx<9;

000002 091947 8.99 20130627

000005 091514 2.2 20130627

Hive基于使用完成,這些都是日常的操作。后面我會(huì)繼續(xù)講一下,HiveQL優(yōu)化及Hive的運(yùn)維。

參照:http://blog.fens.me/hadoop-hive-intro/

創(chuàng)作挑戰(zhàn)賽新人創(chuàng)作獎(jiǎng)勵(lì)來(lái)咯,堅(jiān)持創(chuàng)作打卡瓜分現(xiàn)金大獎(jiǎng)

總結(jié)

以上是生活随笔為你收集整理的HIVE攻略 JFK_Hive安装及使用攻略的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。