日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Understanding Clouds from Satellite Images比赛的discussion调研与colab数据集下载配置

發布時間:2023/12/20 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Understanding Clouds from Satellite Images比赛的discussion调研与colab数据集下载配置 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?

colab數據集下載配置代碼:

%%time !pip install -U -q kaggle !mkdir -p ~/.kaggle!echo '{"username":"pupil1","key":"ae776d041bf94ae1bfa9a3843797ad6d"}' > ~/.kaggle/kaggle.json!chmod 600 ~/.kaggle/kaggle.json !mkdir -p understanding_cloud_organization !kaggle competitions download -c understanding_cloud_organization !mv *.zip understanding_cloud_organization/ !mv *.csv understanding_cloud_organization/ !cd /content/understanding_cloud_organization/;unzip train_images.zip !cd /content/understanding_cloud_organization;mkdir train_images;mv *.jpg train_images/ !cd /content/understanding_cloud_organization/;unzip train.csv.zip !cd /content/understanding_cloud_organization/;unzip test_images.zip !cd /content/understanding_cloud_organization;mkdir test_images;mv *.jpg test_images

?

?

?

?

根據[2]的描述

The remaining area, which has not been covered by two succeeding orbits, is marked black.0

所以圖片中如果出現黑色區域,就是兩顆衛星都沒有掃描到的地方。如下:

?

?

使用pupil1賬號視角,凡是變色的都是看過的,實在極其沒有意義的不予收錄.

?

鏈接備注
Train with crops, Predict with full images發帖子的人得分不高
How effective is pseudo-labeling?(看完了)半監督

[LB 0.628] simple segmentation approach

threshold is high?

threshold的用法

Overlapping Labels in Train Data?

?

Can a pixel be considered as multiple classes?

(看完了)

根據第一個鏈接,一個像素可以屬于多個類別.

Each image was labeled by several people (2-4), so the labels can overlap. In addition, there was no restriction that the labels from a single labeler cannot overlap. To create the masks for this competition, we simply used the union of all labels for each class. So naturally there will be some overlap.

AdamAccumulate(看完了)提到了AdamAccumulate的版本兼容性問題
Hints for late joiners?(看完了)提到使用steel比賽的方案
Bounding Boxes instead of Segmentation

(看完了)評論中提到:

舉辦方不鼓勵對象檢測的方式,但是帖子的作者認為線性的模型比非線性的模型跟容易泛化,所以堅持使用Bounding Boxes(對象檢測)的方式

use linknetunet> linknet > fpn
Correct Dice Metric(看完了)討論誤差函數機制
Instance Segmentation->Request for list of past competition參考資料

Information: Bad image list

?

Corrupt and Mislabeled Images

?

Information: Bad image list

一些損壞的數據
Question about the black area in the image有很好的可視化
ResNet34 implementation of Unet works but ResNet 50 and 101 fails?(看完了)改變模型如果爆內存就減少batch_size
Flowers are easy to pick ?介紹了一些樹算法
Single model performance最佳單模
A best description of Generating mask from encoded pixel涉及encoded pixel

Adding TTA to the model before optimisation could help

?

Augmentations Strategies for this Competition. TTA?

使用時間強化

Augmentations thred

?

Augmentations released version 0.4.0

圖像增強的討論
Questions about the origin of the data討論快照功能

More Tricks to Train w/ Bigger Batches (pytorch)

?

Some tricks to train faster (pytorch)

?

A trick to use bigger batches for training: gradient accumulation

討論訓練技巧
Simple Descriptions of Cloud Types / Labeling Process討論肉眼區分類別
Fast data loading [Experiments]?快速讀取數據
Deeper, Stronger, Better?

發現resnet18有效

resnext50_32x4d和efficientnet-b5無效?

Beware of Pandas value_counts method for validation split指出幾個代碼的pandas使用有誤
Efficient Net B4-B7評論區提到修補小batch_size的辦法是使用?gradient accumulation

Improving code quality with utility scripts

?

Utility scripts for Keras users

?

Using High-level frameworks is not learner friendly

代碼推銷
Object Detection vs Instance Segmentation很多概念
Hybrid convolutional and bidirectional LSTM or RNN使用RNN網絡
EfficientNets are now available in pytorch segmentation model repo.沒看懂這個是干嘛的,房之后再看
New method to tackle severe label noise處理label噪音的一篇論文
FPN or Unet: Which one is better?提到了FPN以及Unet
Some thoughts on this competitionkernel grandmaster的一些想法
what is the label to be taken for overlapping masks? for example, in the image 0011165.jpg, Fish and Flower masks overlap each other for some region.mask重合
Must read material一些資料

Ideas for merging ensemble's predictions

?

How to effectively ensemble models with Keras

討論模型融合
Instance Segmentation->How to predict classes討論UNET的輸出怎么改成多分類
What does it mean to use a pretrained resnet encoder with UNET?討論UNET使用預訓練的resnet編碼器是什么意思?
Regular image segmentation approach提到進行語義分割任務的都有兩個數據集
Discussing post processing討論后處理
Weakly supervised segmentation弱監督分割
Must-see Kernels and topics - Understanding Clouds from Satellite Images對于資料的自行總結
RLE Decode in C++提到了RLE技術
Hints from a late joiner's persepctive提到了后處理
Impact of using classier for removing the masks考慮去掉mask編碼
A Late Joiner's Understanding and Notes需要細看
LPT: See what's going on with that commit ?介紹了一個有用的訓練的可視化工具
Knock Knock can send you email notification (or slack notification)一個工具用來提醒你訓練結束的時候發信息到你郵件通知你

?

一些統計數據來自[1]:

Useful Stats::

no. of empty mask = 7055
no. of non-empty mask = 7737
no. of non-empty mask for?Fish?= 1864
no. of non-empty mask for?Flower?= 1509
no. of non-empty mask for?Gravel?= 1982
no. of non-empty mask for?Sugar?= 2382

?

Reference:

[1]Public TestSet Distribution via LB probing

[2]https://www.kaggle.com/c/understanding_cloud_organization/data

總結

以上是生活随笔為你收集整理的Understanding Clouds from Satellite Images比赛的discussion调研与colab数据集下载配置的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。