日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

存储输出的pickle文件作为数据源

發(fā)布時間:2023/12/20 编程问答 29 豆豆
生活随笔 收集整理的這篇文章主要介紹了 存储输出的pickle文件作为数据源 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

這個東西的好處是你可以把輸出的pickle文件作為數(shù)據(jù)源,而且不會占用disk的空間

####################################下面是官方教程(注意已經(jīng)過時)##################################

下面是原文轉(zhuǎn)載:

Our data science and engineering teams have some big news to share… you can now use any public kernel’s output files as a data source!

Plug and Play

This new functionality enables code that is more flexible, reusable, and easier to troubleshoot. With kernels as data sources, you can neatly plug together a data polishing script in R, a visualization script, and a model fitting script in Python without messy dependencies.

Follow Along

Cleaner and more compartmentalized code makes kernels an even better learning resource. Now your code can follow better practices, making it easier for new data scientists to follow along and for collaborators to pull out the pieces that will help them iterate effectively.

Adding a Kernel Data Source

Only kernels with data files as output can be used as a data source.

There are two ways to add a kernel as a data source:

1.Click Add a Data Source from within a kernel you are editing.

You’ll see that Kernels is now listed alongside Datasets and Competitions in the pop up. You can search for specific kernels using the search box.

  • Go to any usable kernel’s Output tab and click “New Kernel Using This Data”.
  • Aurelio, the lead engineer on this feature, would love to hear what you think!

    ?

    ?

    #########################下面是自己的教程###################################

    ?

    1.在一個名叫IEEE Simple XGBoost的Notebook中寫一大堆代碼(代碼中必須包含to_pickle之類的輸出函數(shù)),然后commit

    2.重新打開

    https://www.kaggle.com/appleyuchi/ieee-simple-xgboost/output

    選擇output一欄:

    3.點擊上面的Nwe Dataset,會彈出對話框

    我們把新的數(shù)據(jù)集(同時也是一個文件夾)取名為useNewData,然后點擊Create,會出現(xiàn)下面的進(jìn)度條:

    4.

    ?

    5.然后點擊New Notebook,此時就會新建New Notebook來使用自己剛剛生成的pickle數(shù)據(jù).

    6.等待一段時間后,我們會看到新生成NoteBook中的右側(cè)是:

    7.最后,當(dāng)你重新打開kaggle的時候,就能看到這個:

    上面的useNewData就是你新建的數(shù)據(jù)集的名字.

    ?

    小結(jié):

    pickle數(shù)據(jù)的讀取速度遠(yuǎn)遠(yuǎn)快于csv文件

    ?

    ?

    ?

    Reference:

    https://www.kaggle.com/product-feedback/45472

    總結(jié)

    以上是生活随笔為你收集整理的存储输出的pickle文件作为数据源的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。