日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

数据松弛Data Relaxation

發布時間:2023/12/20 编程问答 34 豆豆
生活随笔 收集整理的這篇文章主要介紹了 数据松弛Data Relaxation 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

數據松弛作用:

train和test的特征各自去掉頻率不一致的取值,讓train和test關于某特征的各種取值的概率分布全都一致。

?

松弛代碼:

?

import pandas as pd import numpy as np import multiprocessing import warnings import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb import gc from time import time import datetime import matplotlib.pyplot as plt from tqdm import tqdm_notebook from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import StratifiedKFold, KFold, TimeSeriesSplit, train_test_split from sklearn.metrics import roc_auc_score from sklearn.tree import DecisionTreeClassifier from sklearn import tree import graphviz import pandas as pd import datatable as dt warnings.simplefilter('ignore') sns.set()def reduce_mem_usage(df, verbose=True):numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']start_mem = df.memory_usage(deep=True).sum() / 1024**2for col in df.columns:col_type = df[col].dtypesif col_type in numerics:c_min = df[col].min()c_max = df[col].max()if str(col_type)[:3] == 'int':if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:df[col] = df[col].astype(np.int8)elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:df[col] = df[col].astype(np.int16)elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:df[col] = df[col].astype(np.int32)elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:df[col] = df[col].astype(np.int64)else:c_prec = df[col].apply(lambda x: np.finfo(x).precision).max()if c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max and c_prec == np.finfo(np.float32).precision:df[col] = df[col].astype(np.float32)else:df[col] = df[col].astype(np.float64)end_mem = df.memory_usage().sum() / 1024**2if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * (start_mem - end_mem) / start_mem))return df def plot_numerical(feature):fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(16, 18))sns.kdeplot(train[feature], ax=axes[0][0], label='Train');#第1行圖的第1幅圖sns.kdeplot(test[feature], ax=axes[0][0], label='Test');#第1行圖的第1幅圖sns.kdeplot(train[train['isFraud']==0][feature], ax=axes[0][1], label='isFraud 0')sns.kdeplot(train[train['isFraud']==1][feature], ax=axes[0][1], label='isFraud 1')test[feature].index += len(train)axes[1][0].plot(train[feature], '.', label='Train');#第2行圖的第1幅圖axes[1][0].plot(test[feature], '.', label='Test');axes[1][0].set_xlabel('Row index');axes[1][0].legend()test[feature].index -= len(train)#減去偏置時間axes[1][1].plot(train[train['isFraud']==0][feature], '.', label='isFraud 0');axes[1][1].plot(train[train['isFraud']==1][feature], '.', label='isFraud 1');axes[1][1].set_xlabel('row index');axes[1][1].legend()pd.DataFrame({'train': [train[feature].isnull().sum()], 'test': [test[feature].isnull().sum()]}).plot(kind='bar', rot=0, ax=axes[2][0]);pd.DataFrame({'isFraud 0': [train[(train['isFraud']==0) & (train[feature].isnull())][feature].shape[0]],'isFraud 1': [train[(train['isFraud']==1) & (train[feature].isnull())][feature].shape[0]]}).plot(kind='bar', rot=0, ax=axes[2][1]);fig.suptitle(feature, fontsize=18);#第1行的兩個子圖axes[0][0].set_title('Train/Test KDE distribution');axes[0][1].set_title('Target value KDE distribution');#第2行的兩個子圖axes[1][0].set_title('Index versus value: Train/Test distribution');axes[1][1].set_title('Index versus value: Target distribution');#第3行的兩個子圖axes[2][0].set_title('Number of NaNs');axes[2][1].set_title('Target value distribution among NaN values');plt.show()def relax_data(df_train, df_test, col):cv1 = pd.DataFrame(df_train[col].value_counts().reset_index().rename({col:'train'},axis=1))cv2 = pd.DataFrame(df_test[col].value_counts().reset_index().rename({col:'test'},axis=1))cv3 = pd.merge(cv1,cv2,on='index',how='outer')factor = len(df_test)/len(df_train)cv3['train'].fillna(0,inplace=True)cv3['test'].fillna(0,inplace=True)cv3['remove'] = Falsecv3['remove'] = cv3['remove'] | (cv3['train'] < len(df_train)/10000)cv3['remove'] = cv3['remove'] | (factor*cv3['train'] < cv3['test']/3)cv3['remove'] = cv3['remove'] | (factor*cv3['train'] > 3*cv3['test'])cv3['new'] = cv3.apply(lambda x: x['index'] if x['remove']==False else 0,axis=1)cv3['new'],_ = cv3['new'].factorize(sort=True)cv3.set_index('index',inplace=True)cc = cv3['new'].to_dict()df_train[col] = df_train[col].map(cc)df_test[col] = df_test[col].map(cc)return df_train, df_test

數據準備:

train=pd.read_csv('./ieee-fraud-detection/train1.csv') train=reduce_mem_usage(train) test =pd.read_csv('./ieee-fraud-detection/test1.csv') test=reduce_mem_usage(test)

?

松弛前的效果:

plot_numerical('C7')

?

松弛后的效果:

train, test = relax_data(train, test, 'C7') plot_numerical('C7')

總結

以上是生活随笔為你收集整理的数据松弛Data Relaxation的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。